Production and Characterisation of Microencapsulated Particles of Harugana madagascariensis: a Natural Fungicide with an Improved Delivery Potential
Main Article Content
Abstract
Invasive fungal infections (IFI) are caused by non-pathogenic fungi in the immunocompromised host. However, ethnobotanical information suggests that Harugana madagascariensis (HM-E) is one of the medicinal plants used to treat IFI in Southern Nigeria. This study aimed at evaluating the effect of HM-E and microencapsulated extract of H. madagascariensis (HM-M) on Aspergillus niger and Rhizopus spp as well as the influence of microencapsulation on the biological activity of HM-E. The microencapsulation was done using a modified coacervation process, antifungal screening was carried out using an agar disc model, characterization of the microparticles was done using Fourier-transform infrared (FTIR), Scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX). The encapsulation efficiency of HM-M was observed to be 72.45 with a solubility value of 97.95%. SEM showed that HM-M particles exhibited relatively similar sizes, an irregular surface structure, and deep depressions in the walls. EDX analysis of HM-E at spot 1 revealed the presence of oxygen and carbon. Also, A. niger was resistant to HM- E and HM-M at 0.2 and 0.4 mg/mL, while no growth of Rhizopus spp was observed with HM-E and HM-M at 0.2 and 0.4 mg/mL in a concentration-dependent manner. In conclusion, Rhizopus sp was observed to be sensitive to HM-E and HM-M at both 0.2 and 0.4 mg/mL, in a concentration-dependent manner. The findings support the usage of HM and encourage microencapsulation of HM to improve drug delivery and acceptability in the treatment of Rhizopus sp-induced IFI.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Weimer KED, Smith PB, Puia-Dumitrescu M, Aleem S. Invasive fungal infections in neonates: A Review. Pediatr. Res. 2022;91(2):404-412. doi: 10.1038/s41390-02
Sifuentes-Osornio J, Corzo-León DE, Ponce-De-León LA. Epidemiology of invasive fungal infections in Latin America. Curr Fungal Infect Rep. 2021;6(1):23–34.
Çağla Karakoç Z. Epidemiology of invasive fungal infections. Klimik Dergisi. 2019;32(2):118-123.
Webb BJ, Ferraro JP, Rea S, Kaufusi S, Goodman BE, Spalding J. Epidemiology and clinical features of invasive fungal infection in a US health care network. Open Forum Infect Dis. 2021.31;5(8).516-533
Dai DQ, Wijayawardene NN, Zhang GQ, Gao Y, Wijayawardene NN, Hyde KD. Outline of Fungi and fungus-like taxa – 2021. Mycosphere. 2022;13(1).1060-1456
Gou Y, Hu Y, Wang W. Immunotherapy for fungal infections. Chinese J Appl Clin Pediatr. 2024;39(1):1-6
McCarthy MW, Denning DW, Walsh TJ. Future research priorities in fungal resistance. J Infect Dis. 2017;216:S484–S492, https://doi.org/10.1093/infdis/jix103
Huseyin CE, O’Toole PW, Cotter PD, Scanlan PD. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiology Reviews. 2017;41(4):479-511. doi: 10.1093/femsre/fuw047.
Hossain CM, Ryan LK, Gera M, Choudhuri S, Lyle N, Ali KA. Antifungals and Drug Resistance. Encyclopedia. 2022; 2(4), 1722-1737;https://doi.org/10.3390/encyclopedia2040118
Pathakumari B, Liang G, Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother 2020;130(165):1-17. Doi: 10.1016/j.biopha.2020.110550.
Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive aspergillosis by Aspergillus flavus: Epidemiology, diagnosis, antifungal resistance, and management. JoF. 2019;5(3):55.1-23 doi: 10.3390/jof5030055.
Ahmed AOE, Ali GA, Goravey W. Concomitant Pulmonary Tuberculosis and Invasive Aspergillosis Infection in an Immunocompetent Host. Eur J Case Reports Intern Med. 2022;9(3):1-6. doi: 10.12890/2022_003249. eCollection.
Bosetti D, Neofytos D. Invasive Aspergillosis and the Impact of Azole-resistance. Current Fungal Infection Reports. 2023; 18: 1–10. doi: 10.1007/s12281-023-00459-z
Boyer J, Feys S, Zsifkovits I, Hoenigl M, Egger M. Treatment of Invasive Aspergillosis: How It’s Going, Where It’s Heading. Mycopathologia. 2023;188(5): 667–681.
Vahedi-Shahandashti R, Lass-Flörl C. Novel antifungal agents and their activity against Aspergillus species. JoF. 2020;6(4):213.1-21 doi: 10.3390/jof6040213
Jeff-Agboola Y, Onifade A. In vitro Efficacies of Some Nigerian Medicinal Plant Extracts against Toxigenic Aspergillus flavus, A. parasiticus and A. ochraceus. Br J Pharm Res. 2016;9(1):1-9. DOI: 10.9734/BJPR/2016/20390
Frakolaki G, Giannou V, Kekos D, Tzia C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit Rev Food Sci Nutr. 2021;61(9):1515-1536. doi: 10.1080/10408398.2020.1761773.
Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul 2010;27(3).187-197. Doi: 10.3109/02652040903131301.
Mohd Yusop FH, Manaf SFA, Hamzah F. Preservation of Bioactive Compound via Microencapsulation. Chem Eng Res Bull. 2017;19:50 -56
Calderón-Oliver M, Ponce-Alquicira E. The Role of Microencapsulation in Food Application. Molecules. 2022;27(5).1-16. https://doi.org/10.3390/molecules27051499
Al-Hamayda A, Abu-Jdayil B, Ayash M, Tannous J. Advances in microencapsulation techniques using Arabic gum: A comprehensive Industrial crop and products. 2023;205(1):501-532
Yara RR, Juliete PN, Narendra N. Microencapsulation of extracts of bioactive compounds obtained from Acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: drying:Chemical, morphological and chemometric characterization. Food Chemistry. 2023;254(4).1-33
Nitamani C, Murlidhar M, Kalyan D. Microencapsulation: An overview of concept, methods, properties, and applications in food. Food Frontiers. 2021; 2(4).426-442.
Choudhury N, Meghwal M, Das K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers. 2021;2(4):426-442
Oluwasegun A, Ntungwe E, Bunyamin A, Saraiva L, Princiotto S, Rijo P. Celosia trigyna Linn (Cucurbitaceae) Annihilate Human Breast, Colon, and Lung Cancer Cells: Combination of Cheap Template for Anticancer Screening. Int J Transl Med. 2022, 2(4), 574-585
Adedokun O, Ntungwe EN, Viegas C, Adesina B, Barboni L, Maggi F. Enhanced Anticancer Activity of Hymenocardia acida Stem Bark Extract Loaded into PLGA Nanoparticles. Pharmaceuticals. 2022, 15(5), 535-549; https://doi.org/10.3390/ph15050535
Oluwasegun A, Ogochukwu U, Mansurat O, Didacus N, Christiana J, Toluwalope O. Evaluation of toxicological profile of methanol leaf extract of Waltheria indica (Sterculiaceae). GSC Biol Pharm Sci. 2021;17(2), 034–043. https://doi.org/10.30574/gscbps.2021.17.2.0267
Soliman TN, Mohammed DM, El-Messery TM, Elaaser M, Zaky AA, Eun JB. Microencapsulation of Plant Phenolic Extracts Using Complex Coacervation Incorporated in Ultrafiltered Cheese Against AlCl3-Induced Neuroinflammation in Rats. Front Nutr. 2022;9. 923-936
Khaing WW, Win SS. Potent Antioxidant Activity of Cassia siamea Flowers and Adsorption Capacity of Dried Leaves of Cassia siamea Lam. 3rd Myanmar Korea Conf Res J. 2020;3(5):2027-2034
Nwofor Chioma N, Oyeka Christie A, Onyenwe Nathaniel E, Fajana Aqib. Phytochemical analysis and in vitro screening of antifungal activity of Jatropha multifida, Euphorbia hirta, Ocimum gratissimum and Mitracarpus scaber leaves extract. GSC Biol Pharm Sci. 2021;14(3):098-112.
Nwofor CN, Duru CE, Onyenwe NE. Computational identification of small molecules in Mitracarpus scaber ethanolic leaf extract with fungal keratinase inhibitory potentials. J Nat Pestic Res. 2022;2(4):100010.1-8
Parente-Rocha JA, Bailão AM, Amaral AC, Taborda CP, Paccez JD, Borges CL. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm. 2017:1-16
Bussa NF, Belayneh A. Traditional medicinal plants used to treat cancer, tumors and inflammatory ailments in Harari Region, Eastern Ethiopia. South African J Bot. 2019;122:360-368. https://doi.org/10.1016/j.sajb.2019.03.025
Syed AH, Ahsan H, Yusuf N, Tahira N, Yang W, Hafiz AR, Yuanda S. Microencapsulation and the Characterization of Polyherbal Formulation (PHF) Rich in Natural Polyphenolic Compounds. Nutrients. 2018; 10(7).843-856
Maharach M, Ronnachai P, Pajaree T, Chanadol S, Metha Wanapat. Extraction, Characterization, and Chitosan Microencapsulation of Bioactive Compounds from Cannabis sativa, Cannabis indica, and Mitragyna speiosa. Antioxidant. 2022;11(11). 656-697
Noushin E, Wei L, Emilie D, Adem G. Microencapsulation of Natural Food Antimicrobials: Methods and Applications. 2022;12(8).3837-3852
Van TN, Phuong TT. Characterization of microencapsulated powders rich in saponins from cocoa pod husk (Theobroma cacao L.) and medicinal plant Helicteres hirsuta Lour. Heliyon. 2024; 10(11) e32703-32725
Kuete V, Seukep AJ. Harungana madagascariensis as a source of antibacterial agents. Adv Bot Res. 2023;107.177-191. DOI: 10.1016/bs.abr.2022.08.015
Pal M. Morbidity and Mortality Due to Fungal Infections. J Appl Microbiol Biochem. 2018;01(01):1-23
Baker SE. Aspergillus niger genomics: Past, present and into the future. Med Mycol. 2006;44.Suppl 1:S17-21. doi: 10.1080/13693780600921037
Eh Dam VSK, Ramli RR. A Rare Cause of Fungal Rhinosinusitis: Exophiala jeanselmai. Int J Hum Heal Sci. 2022;6(2):217-221
Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature. 2005;437(7060). 884–888
Ezekiel OI, Suleiman MM, Lazarus KM, Jacobus NE. Antifungal and antibacterial activities of different extracts of Harungana madagascariensis stem bark. 2009. Planta Medica 47(9):878-885