Investigating the Combined Effects of Physicochemical Conditions on Functional Properties of Two strains of Lactic Acid Bacteria

Main Article Content

Essm A. Ghalouni
Omar Hassaine

Abstract

Lactic acid bacteria (LAB) are widely used in the food industry due to their interesting technological activities and beneficial effects on human health. In technological processes, physicochemical conditions often appear in combination. To ensure the viability of LAB and improve their metabolic and functional properties, adjustment of optimal physicochemical conditions should be considered. In this study, the combined effects of temperature, hydrogen potential (pH), and sodium chloride concentration, on two functional properties, proteolysis and acidification, of two strains of LAB, Lactococcus lactis (LCL) and Enterococcus faecium (CHT4), were investigated. Both activities were assayed at the end of growth of the two strains at different values of the three factors using a central composite design (CCD). Graphical analysis of results transcribed as isoresponse contour plots showed that temperature positively affected the LCL strain’s proteolysis at 40°C. In contrast, the CHT4 strain’s proteolysis was affected by pH of about 7 and temperature of around 40°C in decreasing order. The LCL strain’s acidification was positively affected by reducing the salt concentration in the medium to about 2 to 3% combined with a temperature above 37°C; in contrast, the CHT4 strain’s acidification was affected by temperature (37 to 40°C), and pH (6.2 to 7). Statistical analysis of the results was used to generate mathematical models describing both activities according to the most significant factors. Applying these models when using the strains on an industrial scale will optimize food production conditions and improve their organoleptic quality, with health benefits that meet consumer expectations.

Article Details

How to Cite
Ghalouni, E. A., & Hassaine, O. (2024). Investigating the Combined Effects of Physicochemical Conditions on Functional Properties of Two strains of Lactic Acid Bacteria. Tropical Journal of Natural Product Research (TJNPR), 8(10), 8923-8931. https://doi.org/10.26538/tjnpr/v8i10.38
Section
Articles

References

Axelsson L, Ahrné S. Lactic acid bacteria. In: Appl. Microbiol. Syst. F.G Priest and M Goodfellow (Eds.). Dordrecht: Springer Netherlands ; 2000. 367-388p.

Oshoma CE, Allen OA, Oyedoh PO. Growth Enhancement of Lactic Acid Bacteria for Production of Bacteriocin Using a Local Condiment Supplemented with Nitrogen Sources. Trop J Nat Prod Res. 2020; 4(8):411-416.doi.org/10.26538/tjnpr/v4i8.16

Sionek B, Szydłowska A, Trz askowska M, Kołozyn-Krajewska D. The Impact of Physicochemical Conditions on Lactic Acid Bacteria Survival in Food Products. Fermentation. 2024; 10(6) : 298. Doi:10.3390/fermentation10060298

Song AAL, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact.2017; 16:55. Doi: 10.1186/s12934-017-0669-x

Sionek B, Szydłowska A, Küçükgöz K, Kołozyn-Krajewska D. Traditional and New Microorganisms in Lactic Acid Fermentation of Food. Fermentation. 2023; 9(12), 1019. https://doi.org/10.3390/fermentation9121019

Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris H, Mattarell P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020 ; 70(4) : 2782–2858. https://doi.org/10.1099/ijsem.0.004107

Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology- A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front. Microbiol. 2019; 10: 876. Doi: 10.3389/fmicb.2019.00876

AjayiAS, Ogunleye BO,OluwasolaMA, Okediya CK, Bakare-AkpataO, AkinnolaOO.Screening of Probiotic Characteristics of Lactic Acid Bacteria Isolated from Some Fermented Nigerian Food Products.Trop J Nat Prod Res. 2020; 4(12):1166-1169.doi.org/10.26538/tjnpr/v4i12.22

Citation: Al-Qudah MMA, Rahahleh RJ, Alraei WY, Aljaraedah TY, Abu-Harirah HA, Amawi KF, El-Qudah JMF. Evaluation of the Antimicrobial Activity of Bacteriocin-Producing Lactic Acid Bacteria Isolated from Human Intestine against Pathogenic Microorganisms. Trop J Nat Prod Res. 2023; 7(6):3182-3190http://www.doi.org/10.26538/tjnpr/v7i6.18

International Organization for Standardization. Microbiology of the Food Chain-Requirements and Guidelines for Conducting Challenge Tests of Food and Feed Products-Part 1: Challenge Tests to Study Growth Potential, Lag Time and Maximum Growth Rate . Geneva, Switzerland. 2019; ISO 20976-1:2019(E)

Whiting RC. Microbial modeling in foods. Crit. Rev. Food Sci. Nutr. 1995; 35: 467-494. https://doi.org/10.1080/10408399509527711

Terzaghi BE, Sandine WE. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975;29: 807-813. Doi: 10.1128/am.29.6.807-813.1975

De Man JC, Rogosa M, Sharpe ME. A medium for cultivation of lactobacilli. J. Appl. Bacteriol.1960; 23 :130-135. Doi: 10.1111/j.1365-2672.1960.tb00188.x

Box GEP, Wilson KB. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B Methodol.1951 ;13(1) :1-38. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

Lowry OH, Rosebrough NJ, Farr AL, Randa PP. Protein measurement with the Folin reagent. J. Biol. Chem.1951; 193(1):256-275. Doi: 10.1016/S0021-9258(19)52451-6

Accolas JP, Bloquel R, Didienne R, Regnier J. Acidifying properties of thermophilic lactic acid bacteria in relation to yogurt production. Lait.1977; 57(561-562): 1-23. https://doi.org/10.1051/lait:1977561-5621

Sutherland JP, Bayliss AJ, Roberts TA. Predictive modeling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol.1994; 21(3):217-236. Doi: 10.1016/0168-1605(94)90029-9

De Giori GS, De Valdez GF, De Ruiz Holgado AP, Oliver G. Effect of pH and Temperature on the Proteolytic Activity of Lactic Acid Bacteria. J Dairy Sci. 1985; 68(9):2160-2164. Doi: 10.3168/jds.S0022-0302(85)81085-7

Hugenholtz H, Van Sinderen D, Kok J, Konings W. Cell-wall associated proteases of Streptococcus cremoris Wg2. Appl Environ Microbiol.1987;53(4): 853-859. Doi: 10.1128/aem.53.4.853-859.1987

Monnet V, le Bars D, Gripon JC. Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO763. J Dairy Res.1987;54(2): 247-255. Doi: 10.1017/s0022029900025383

Smid EJ, Driessen AJM, Konings WN. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J Bacteriol.1989 ; 171(1): 292-298. Doi: 10.1128/jb.171.1.292-298.1989

Thomas TD, Pritchard GG. Proteolytic enzymes of dairy starter cultures. FEMS Microbiol. Rev. 1986; 3(3): 245-268. https://doi.org/10.1111/j.1574-6968.1987.tb02464.x

Argyle PJ, Mathison GE, Chandan RC. Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell. J Appl Bacteriol.1976; 41(1):175-184. Doi: 10.1111/j.1365-2672.1976.tb00616.x.

Ezzat N, El Soda M, Desmazeaud MJ, Ismail A. Peptide hydrolases from the Thermobacterium group of lactobacilli. II. Physiological factors and enzyme production. Milchwissenschaft. 1982; 37:666-668.

Torneaur C. Proteolytic ability of lactobacilli present in cheese and cheese curd. Lait. 1972; 52 (513 -514):149-174. https://hal.science/hal-00928580

Van der Zant WC, Nelson FE. Proteolysis by Streptococcus lactis grown in milk with and without controlled pH. J. Dairy Sci. 1953; 36 (10):1104-1111. https://doi.org/10.3168/jds.S0022-0302(53)91604-X

Cowman RA, Swaisgood HE, Speck ML. Proteinase enzyme system(s) of lactic streptococci. II. Role of membrane proteinase in cellular function. J Bacteriol.1967 ; 94(4) :942-948. Doi: 10.1128/jb.94.4.942-948.1967

Giraffa G. Functionality of Enterococci in Dairy Products. Int J Food Microbiol. 2003; 88 (2-3): 215-222. Doi: 10.1016/s0168-1605(03)00183-1

Burdychova R, Komprda T. Biogenic amine-forming microbial communities in cheese. FEMS Microbiol Lett. 2007;276 (2):149-155. Doi: 10.1111/j.1574-6968.2007.00922.x.

Bouras-Boublenza F. Physiological responses of salt stress and osmoprotection with proline in two strains of lactococci isolated from camel’s milk in Southern Algeria. Afr. J. Biotechnol.2011 ; 10(83). Doi :10.5897/AJB11.1807

Thomas TD. Regulation of lactose fermentation in group N streptococci. Appl Environ Microbiol.1976; 32 (4):474-478. Doi: 10.1128/aem.32.4.474-478.1976

Turner KW, Thomas TD. Uncoupling of growth and acid production in lactic streptococci. NZ J. Dairy Sci. Technol. 1975; 10 (4):162-167.

Morandi S, Brasca M, Alfieri P, Lodi R, Tamburini A. Influence of pH and temperature on the growth of Enterococcus faecium and Enterococcus faecalis. Lait.2005;85(3): 181-192. Doi: 10.1051/lait:2005006

Jensen JP, Reinbold GW, Washam CJ, Vedamuthu ER. Role of enterococci in Cheddar cheese: Growth of entercocci during manufacturing and curing. J. Milk Food Technol. 1973;36 (12): 613-618.

Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, Gomez J, Gomez R, Kalantzopoulos G, Ledda A, Medinas M, Rea MC, Rodriguez E. Characterization of the lactic acid bacteria in artisanal dairy products. J Dairy Res.1997;64(3): 409-421. Doi: 10.1017/S0022029997002185