Metagenomic Analysis of Fig (Ficus carica L.) Endophytic Bacteria as a Source of Flavonoids
Main Article Content
Abstract
The improper usage of antibacterials causes pathogenic bacteria to develop resistance to antibacterials. Secondary metabolites represent an alternative in the look for potential antibacterial bioactive compounds. Figs, as a source of flavonoids, exhibit antibacterial action owing to the presence of endophytic bacteria that inhabit the internal tissues of fig plants. Researching the diversity of microorganisms, including endophytic bacteria, is challenging because 99 percent of environmental microorganisms are not cultivable. For this reason, metagenomics—an analysis that can examine the diversity of endophytic bacteria without cultivation—is required. This study aimed to assess the diversity of endophytic bacteria with potential antibiotic activity using a metagenomic approach. The research methodology comprises metagenomic analysis using protocols for DNA extraction from fig tissues, amplification of the 16s rRNA gene, electrophoresis, Next Generation Sequencing, and phylogenetic tree construction. The acquired data will be descriptively interpreted and analyzed via the QIIME Operational Taxonomic Unit software to yield results in the form of fig endophytic bacterial species data. The species-level diversity of endophytic bacteria identified in the Iraqi and Blue Giant types of figs (Ficus carica L.) includes Weissella ghanensis, Weissella paramesenteroides, Ralstonia pickettii, Leuconostoc citreum, Pantoea stewartii, Gluconobacter cerinus, and Lactococcus lactis. This study's results demonstrate that the metagenomic method utilizing the 16S rRNA gene can identify endophytic bacteria in figs, offering the expanded potential for discovering beneficial chemicals from natural sources to combat antibacterial resistance.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Fawwas Batio Putra P, Bawon T, Ari Satia N. Isolasi Fungi Tanah Kabupaten Situbondo serta Skrining Aktivitas Antibakteri Terhadap Pseudomonas Aeruginosa. JIFI. 2021; 19 (1) :73-79.
Sabiu S. Therapeutic Use of Plant Secondary Metabolites Bentham Science Publishers; 2022.
Tiezzi A, Ovidi E, Karpiński TM. New Findings from Natural Substances: Bentham Science Publishers; 2022.
Wardi ES, Syukur S, Chaidir Z, Jamsari J, Sartika D. Desain Primer Dan Deteksi Gen CHS (chalcone synthase) Pada Tanaman Gambir (Uncaria gambir (Hunter) Roxb.) Tipe Riau Gadang. RJNAS. 2021;1(1):29-39.
Swamy MK, Akhtar MS. Natural Bio-active Compounds: Springer Singapore; 2019.
Dan W, Dai J. Recent Developments Of Chalcones As Potential Antibacterial Agents In Medicinal Chemistry. EJMECH. 2020; 187:111980.
Suherman E. Pemanfaatan Buah Tin Untuk Perekonomian Dan Kesehatan. Jurnal Buana Pengabdian. 2019;1: 6-14.
Fadhlurrahman I, Rahmawati R, Rahmatika W, Setyaningsih W, Prahendra Z, Andriani L. Pemberdayaan Masyarakat dalam Budidaya Buah Tin Untuk Menunjang Wisata Umbul Ponggok di Kecamatan Polanharjo Kabupaten Klaten. Proceeding SNK-PPM. 2018;1: 123-127
Meziant L, Bey M, Boutiche M, Gali L, Ikhlef A, Louaileche H. Assessment of flavonoid-rich extracts from dark peels of Ficus carica L. fruits for cosmeceutical and antimicrobial applications. TCM. 2022;7:1-13.
Gultom ES, Hasruddin H, Wasni NZ. Exploration of Endophytic Bacteria in FIGS (Ficus carica L.) with Antibacterial Agent Potential. TJNPR. 2023;7(7):3342-3350.
Ginting L, Wijanarka W, Kusdiyantini E. Isolation of Endophytic Bacteria from Papaya (Carica papaya L.) and Amylase Enzyme Activity Test. Berk. Bioteknol. 2020 Dec;3(2).
Pudjas N, Mubarik N, Astuti R, Sudirman L. Antioxidant Activity of Endophytic Bacteria Derived from Hoya multiflora Blume Plant and Their Cellular Activities on Schizosaccharomyces pombe. HAYATI Journal of Biosciences. 2022;29:214-221.
Narayanan Z, Glick BR. Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms. 2022;10(10).
Bielecka M, Pencakowski B, Nicoletti R. Using Next-Generation Sequencing Technology to Explore Genetic
Pathways in Endophytic Fungi in the Syntheses of Plant Bioactive Metabolites. Agriculture. 2022;12(2):187.
Zou K, Liu X, Hu Q, Zhang D, Fu S, Zhang S. Zou K, Liu X, Hu Q, Zhang D, Fu S, Zhang S, Huang H, Lei F, Zhang G, Miao B, Meng D, Jiang L, Liu H, Yin H, Liang Y. Root Endophytes and Ginkgo biloba Are Likely to Share and Compensate Secondary Metabolic Processes, and Potentially Exchange Genetic Information by LTR-RTs. Front Plant Sci. 2021;12.
Abid L, Smiri M, Federici E, Lievens B, Manai M, Yan Y, et al. Diversity of rhizospheric and endophytic bacteria isolated from dried fruit of Ficus carica. Saudi J Biol Sci. 2022;29(9):103398.
Vollmers J, Wiegand S, Kaster A-K. Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist’s Perspective - Not Only Size Matters! PLOS ONE. 2017;12(1):e0169662.
Nuro F. METAGENOM: Penelusuran Makhluk Tak Kasat Mata dalam Tanah. 2017;8.
Hafzari, R, Annisa, Anita K, Muchamad Nur C, Listya Puspa K, Nurul Huda P, Nurbaity, S, D. R. A. K. Marpaung. Precision And Reliability Of Nanoplate Digital Pcr System For Pork DNA Identification And Quantification. JMBFS. 2024;14(1);1-3
Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S. SSR identification and marker development for sago palm based on NGS genome data. Breeding science. 2019;69(1):1-10.
Suratissa DM, Rathnayake US. Diversity and distribution of fauna of the Nasese Shore, Suva, Fiji Islands with reference to existing threats to the biota. Journal of Asia-Pacific Biodiversity. 2016;9(1):11-16.