Mulberry Leaves Extract Ameliorates Lipid Profile, Oxidative Stress and Aortic Histopathological Features In Dyslipidemic Rats Induced by A High-Fat Diet
Main Article Content
Abstract
ccx
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Nugraha G. Lipids; Classification, Metabolism, Atherosclerosis and Laboratory Analysis. 1st ed. Jakarta: TIM; 2017. 68–82 p.
Aman AM, Soewondo P, Soelistijo SA, Arsana PM, Wismandari, Zufry H, Rosandi R. Guidelines for Dyslipidemia Management in Indonesia in 2019. 1st ed. Jakarta: PB PERKENI; 2019.
NCD Risk Factor Collaboration (NCD-RisC). Repositioning of the global epicentre of non-optimal cholesterol. Nature. 2020; 582(7810):73–77. https://www.nature.com/articles/s41586-020-2338-1
BKPK Kemenkes. Indonesian Health Survey in Numbers [Internet]. Indonesian Health Survey. Jakarta; 2023. https://www.badankebijakan.kemkes.go.id/hasil-ski-2023/
Wengrofsky P, Lee J, Makaryus AN. Dyslipidemia and Its Role in the Pathogenesis of Atherosclerotic Cardiovascular Disease: Implications for Evaluation and Targets for Treatment of Dyslipidemia Based on Recent Guidelines. In: Samy I. McFarlane, editor. Dyslipidemia. 1st ed. London: IntechOpen; 2019. p. 180.
Ullah Z, Malik SE, Ghaffar T, Kanwal S, Noor A, Aamir AH. Frequency of hypertriglyceridemia in type 2 diabetic patients receiving statin therapy and its correlation with glycemic control. J Postgrad Med Inst. 2020; 34(4):253–257.
https://jpmi.org.pk/index.php/jpmi/article/view/2779
Linton MF, Yancey PG, Davies SS, Jerome WG (Jay), Linton EF, Song WL, Doran AC, Vickers, KC. The Role of Lipids and Lipoproteins in Atherosclerosis. Feingold, Anawalt, Boyce, editors. Nashville: Endotext.org; 2019. https://www.endotext.org/chapter/the-role-of-lipids-and-lipoproteins-in-atherosclerosis/
Sargowo D. Endothel Dysfunction. 1st ed. Sargowo D, editor. Malang: Universitas Brawijaya Press; 2015. 168 p.
Sargowo D. Pathogenesis of Atherosclerosis. 1st ed. Sargowo D, editor. Malang: Universitas Brawijaya Press; 2015. 298 p.
Sarbini D, Sargowo D, Rohman MS. Hibiscus sabdariffa Linn tea extract against NF-ĸβ, TNF-α and ICAM-1 in Human Umbilical Vein Endothelial Cells (HUVECs) Cultured exposed to Oxidized Low Density Lipoprotein (LDL). J Exp Life Sci. 2011; 1(2):102–110. https://doi.org/10.21776/ub.jels.2011.001.02.07
Susanti E, Sulchan M, Mahati E. Anti-atherogenic Effect of Mulberry Leaf Tea in Atherogenic Index on Rats Dyslipidemia. J Aisyah J Ilmu Kesehat. 2022; 7(3):669–674. https://doi.org/10.30604/jika.v7i3.1013
Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G. Treatment of Dyslipidemias to Prevent Cardiovascular Disease in Patients with Type 2 Diabetes. Curr Cardiol Rep. 2017; 19(1):1-10. https://doi.org/10.1007/s11886-017-0818-1
Cheon DY, Jo S-H. Adverse effects of statin therapy and their treatment. Cardiovasc Prev Pharmacother. 2022; 4(1):1–6. https://doi.org/10.36011/cpp.2022.4.e4
Fakayode AE, Emma-Okon BO, Morakinyo AE, Fajobi AO, Akinyele KN, Oyedapo OO. Investigations of Ameliorative Potentials Extract of P. pellucida on Salt-Fructose Induced Dyslipidemia in Wistar Rats. Trop J Nat Prod Res. 2023; 7(9):4112–4116.
https://doi.org/10.26538/tjnpr/v7i9.40
Lee G-H, Hoang T-H, Jung E-S, Jung S-J, Chae S-W, Chae H-J. Mulberry Extract Attenuates Endothelial Dysfunction through the Regulation of Uncoupling Endothelial Nitric Oxide Synthase in High Fat Diet Rats. Nutrients. 2019; 11(5):1-16. https://doi.org/10.3390/nu11050978
Purnama YHC. Identification of Chemical Compounds in Mulberry Leaf Extract (Morus alba. L). Sci Proc Islam Complement Med. 2022; 1(1):135–138. https://doi.org/10.55116/spicm.v1i1.16
Lee Y, Lee E, Lee M-S, Lee S, Kim C, Kim Y. Hypolipidemic Effect of Mulberry Leaf Extract in Rats Fed a High-cholesterol Diet (P06-014-19). Curr Dev Nutr. 2019; 3:14-19. https://doi.org/10.1093/cdn/nzz031.P06-014-19
Zhang H, Ma ZF, Luo X, Li X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxidant. 2018 ;7(5):1-13. https://doi.org/10.3390/antiox7050069
Huang J, Wang Y, Ying C, Liu L, Lou Z. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high-fat diet. Exp Ther Med. 2018; 16(2):547–556. https://doi.org/10.3892/etm.2018.6254
Peng CH, Lin HT, Chung DJ, Huang CN, Wang CJ. Mulberry Leaf Extracts prevent obesity-induced NAFLD with regulating adipocytokines, inflammation and oxidative stress. J Food Drug Anal. 2018; 26(2):778–787. https://doi.org/10.1016/j.jfda.2017.10.008
Lee YJ, Choi DH, Kim EJ, Kim HY, Kwon TO, Kang DG, Lee HS. Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in Rats fed an atherogenic diet. Am J Chin Med. 2011; 39(1):39–52. https://doi.org/10.1142/S0192415X11008634
Himawan HC, Isa AF, Wiharja DS. Antioxidant Activity Of 70% Ethanol Extract Combination Of Kemangi Leaf (Ocimum Americanum Linn) and Binahong Leaf (Anredera cordifolia (Ten.) Steenis) Using DPPH. J Phys Conf Ser. 2021; 1764(1):1-7. https://doi.org/10.1088/1742-6596/1764/1/012009
Ihedioha JI, Noel-Uneke OA, Ihedioha TE. Reference values for the serum lipid profile of albino rats (Rattus norvegicus) of varied ages and sexes. Comp Clin Path. 2013; 22(1):93–99. https://doi.org/10.1007/s00580-011-1372-7
Isdadiyanto S, Fajar S. Histopathology of White Rat Aorta After Giving Kombucha Tea Concentration of 75% Based on Fermentation Time. Bul Anat dan Fisiol. 2023; 8(2):130–137. https://doi.org/10.14710/baf.8.2.2023.130-137
Sakamoto K, Nagamatsu S, Yamamoto E, Kaikita K, Tsujita K. Atherosclerotic coronary plaque development visualized by in vivo coronary imaging. Circ J. 2018; 82(7):1727–1734. https://doi.org/10.1253/circj.CJ-18-0516
Cui Y, Hou P, Li F, Liu Q, Qin S, Zhou G, Xu X, Si Y, Guo S. Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet. Lipids Health Dis. 2017; 16(9):1-7. https://doi.org/10.1186/s12944-016-0393-2
Kobayashi Y, Miyazawa M. Effects of Morus alba L. (Mulberry) Leaf Extract in Hypercholesterolemic Mice on Suppression of Cholesterol Synthesis. J Pharmacogn Nat Prod. 2016; 2(1)1-9 https://doi.org/10.4172/2472-0992.1000113
Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020; 78(8):615–626. https://doi.org/10.1093/nutrit/nuz071
He L, Xing Y, Ren X, Zheng M, Yu S, Wang Y, Xiu Z, Dong Y. Mulberry Leaf Extract Improves Metabolic Syndrome by Alleviating Lipid Accumulation In Vitro and In Vivo. Mols. 2022; 27(16):1-20 https://doi.org/10.3390/molecules27165111
Ahmed A. Flavonoids And Cardiovascular Risk Factors: A Review. Pharmadvances. 2021; 3(3):521-547. https://doi.org/10.36118/pharmadvances.2021.15
Aman AM, Soewondo P, Soelistijo SA, Arsana PM, Wismandari, Zufry H, Rosandi R. Guidelines for Dyslipidemia Management in Indonesia in 2021. Revise 202. Jakarta: PB PERKENI; 2021. 76 p.
Siriyong T, Boonya-arunnate T, Ninbodee K, Kaewmuean T, Mettriyasakul T, Jawang K, Thongmongkol P, Chanwanitsaku S, Kaewnoi K, Buachum B, Saeloh D, Noosak C, Voravuthikunchai SP. Effects of Traditional Thai Herbal Formulations in Patients with Obesity and Borderline Hyperlipidemia - A Preliminary Pilot Study. Trop J Nat Prod Res. 2022; 6(1):29–33. https://doi.org/10.26538/tjnpr/v6i1.6
Chan KC, Yang MY, Lin MC, Lee YJ, Chang WC, Wang CJ. Mulberry leaf extract inhibits the development of atherosclerosis in cholesterol-fed rabbits and in cultured aortic vascular smooth muscle cells. J Agric Food Chem. 2013; 61(11):2780–2788. https://doi.org/10.1021/jf305328d
Li J, Ji T, Su S, Zhu Y, Chen X, Shang E, Guo S, Qian DW, Duan JO. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway. J Ethnopharmacol. 2022; 283:114713.1-14 https://doi.org/10.1016/j.jep.2021.114713
Batiha GE-S, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, Teibo TKA, Al-kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadaki M. Morus alba: a comprehensive phytochemical and pharmacological review. Naunyn Schmiedebergs Arch Pharmacol. 2023; 396(7):1399–1413. https://doi.org/10.1007/s00210-023-02434-4