Evaluation of Antidiabetic Effects of Watermelon Rind Extract: Integrative Computational Simulations and In Vitro Studies

Main Article Content

Ermawati
Ahyar Ahmad
Sartini Sartini
Nurhasni Hasan
Andi D. Permana
Yanti Leman
Muhammad T. Duppa
Harningsih Karim
Sofa F ajriah
Ajuk Sapar
Sri Atun

Abstract

Diabetes mellitus is a common metabolic disorder characterized by chronic hyperglycemia, requiring the development of alternative therapies to improve glycemic control. Watermelon rind (Citrullus lanatus (Thunb.) Matsum), usually discarded as waste, contains various bioactive compounds potentially having anti-diabetic benefits. This study aimed to evaluate the antidiabetic potential of watermelon rind extract through a comprehensive approach, including secondary metabolite content profiling, Fourier transform infrared spectroscopy (FTIR) analysis, total flavonoid content determination, molecular docking assay, and in vitro enzyme inhibition assay targeting α-glucosidase. Preliminary phytochemical screening showed the presence of major secondary metabolites such as flavonoids, saponins, and phenolic acids. FTIR analysis confirmed the presence of functional groups typical of these bioactive compounds, including hydroxyl, carbonyl, and aromatic groups.


[See the download for the complete Abstract]

Downloads

Download data is not yet available.

Article Details

How to Cite
Ermawati, Ahmad, A., Sartini, S., Hasan, N., Permana, A. D., Leman, Y., Duppa, M. T., Karim, H., ajriah, S. F., Sapar, A., & Atun, S. (2024). Evaluation of Antidiabetic Effects of Watermelon Rind Extract: Integrative Computational Simulations and In Vitro Studies. Tropical Journal of Natural Product Research (TJNPR), 8(10), 8626-8639. https://doi.org/10.26538/tjnpr/v8i10.3
Section
Articles
Author Biographies

Ermawati, Doctoral Program, Faculty of Medicine, Universitas Hasanuddin, Makassar, 90245, Indonesia

Department of Pharmacy, School of Pharmacy YAMASI, Makassar, 90222, Indonesia

Ahyar Ahmad, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Hasanuddin, Makassar, 90245, Indonesia

Research and Development Centre for Biopolymers and Bioproducts, LPPM, Hasanuddin University, Makassar, 90245, Indonesia

How to Cite

Ermawati, Ahmad, A., Sartini, S., Hasan, N., Permana, A. D., Leman, Y., Duppa, M. T., Karim, H., ajriah, S. F., Sapar, A., & Atun, S. (2024). Evaluation of Antidiabetic Effects of Watermelon Rind Extract: Integrative Computational Simulations and In Vitro Studies. Tropical Journal of Natural Product Research (TJNPR), 8(10), 8626-8639. https://doi.org/10.26538/tjnpr/v8i10.3

References

Taylor R. Type 2 diabetes: aetiology and reversibility. Diabetes Care. 2013; 36(4):1047-1055. doi:10.2337/dc12-1805

Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018; 14(6):491-509. doi:10.2217/fca-2018-0045

Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019; 20(18):2229-2235. doi:10.1080/14656566.2019.1672660

Ndisang JF, Vannacci A, Rastogi S. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. J Diabetes Res. 2017; 2017:1478294. doi:10.1155/2017/1478294

DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Hear. 2015; 2(1):e000327-e000327. doi:10.1136/openhrt-2015-000327

Lolok N, Sumiwi SA, Ramadhan DSF, Levita J, Sahidin I. Molecular dynamics study of stigmasterol and beta-sitosterol of Morinda citrifolia L. towards α-amylase and α-glucosidase. J Biomol Struct Dyn. 2024; 42(4):1952-1955.

Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem. 2010; 10(4):315-331. doi:10.2174/138955710791331007

Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J Biomol Struct Dyn. 2020; 0(0):1-15. doi:10.1080/07391102.2020.1801507

Balogun O, Otieno D, Brownmiller CR, Lee SO, Kang HW. Effect of Watermelon (Citrullus lanatus) Extract on Carbohydrates-Hydrolyzing Enzymes In Vitro. Agriculture. 2022; 12(6). doi:10.3390/agriculture12060772

Rotimi DE, Asaleye RM. Impact of Watermelon (Citrallus lanatus) on Male Fertility. JBRA Assist Reprod. 2023; 27(4):702-708. doi:10.5935/1518-0557.20220075

Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv. 2023; 13(7):4436-4475. doi:10.1039/d2ra07977a

Ramadhan DSF, Siharis F, Abdurrahman S, Isrul M, Fakih TM. In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease. J Biomol Struct Dyn. 2022; 40(22):11526-11532. doi: 10.1080/07391102.2021.1959405.

Minh TN, Xuan TD, Tran HD, Van TM, Andriana Y, Khanh TD, Quan NV, Ahmad A. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules. 2019; 24(5):889. doi: 10.3390/molecules24050889.

Emami F, Aliomrani M, Tangestaninejad S, Kazemian H, Moradi M, Rostami M. Copper-Curcumin-Bipyridine Dicarboxylate Complexes as Anticancer Candidates. Chem Biodivers.2022;19(10):e202200202.doi:10.1002/cbdv.202200202

Sahidin I, Sadarun B, Aslan LOM, Wahyuni, Hajrul Malaka M, Fristiohady A. Structural relationship among steroids from Sulawesi Tenggara’s sponge Clathria sp. and their radical scavenger activity. IOP Conf Ser Earth Environ Sci. 2019; 370(1). doi:10.1088/1755-1315/370/1/012027

Serralheiro ML, Guedes R, Fadel SR, Bendif H. Data on identification of primary and secondary metabolites in aqueous extract of Verbascum betonicifolium. Data Br. 2020; 32:106146. doi:10.1016/j.dib.2020.106146

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-2791. doi: 10.1002/jcc.21256.

Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R,

Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao

YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019; 47(D1):D464-D474. doi: 10.1093/nar/gky1004.

Hikmawati D, Fakih TM, Sutedja E, Dwiyana RF, atik N, Ramadhan DSF. Pharmacophore-guided virtual screening and dynamic simulation of Kallikrein-5 inhibitor: Discovery of potential molecules for rosacea therapy. Informatics Med Unlocked.2022; 28:100844.doi:https://doi.org/10.1016/j.imu.2022.

Reiner Ž, Hatamipour M, Banach M, Pirro M, Al-Rasadi K, Jamialahmadi T, Radenkovic D, Montecucco F, Sahebkar A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020; 16(3):490-496. doi: 10.5114/aoms.2020.94655.

Pitaloka DA, Ramadhan DS, Arfan, Chaidir L, Fakih TM. Docking-Based Virtual Screening and Molecular Dynamics Simulations of Quercetin Analogs as Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors of Mycobacterium tuberculosis. Sci Pharm. 2021; 89(2):20. doi:10.3390/scipharm89020020

Várady M, Tauchen J, Fraňková A, Klouček P, Popelka P. Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. LWT. 2022; 172:114245. doi:https://doi.org/10.1016/j.lwt.2022.114245

Nurisyah, Ramadhan DSF, Dewi R, Asikin A, Daswi DR, Adam A, Chaerunnimah, Sunarto, Rafika, Artati, Fakih TM. Targeting EGFR allosteric site with marine-natural products of Clathria Sp.: A computational approach. Curr Res Struct Biol. 2024; 7:100125. doi 10.1016/j.crstbi.2024.100125.

Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018; 23(5):1-17. doi:10.3390/molecules23051038

Reynaldi MA, Setiawansyah A. Anti-breast cancer potential of songga plant (Strychnos lucida R.Br): Review of molecular interactions with estrogen receptor-α in silico. Sasambo J Pharm. 2022; 3(1):30-35. doi:10.29303/sjp.v3i1.149

Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018; 23(8):1899. doi:10.3390/molecules23081899

Candra GNH, Wijaya IMAP. Molecular Docking of Kaempferol as Anti-Inflammatory Agent in Atherosclerosis In Silico. J Ilm Medicam. 2021; 7(1):13-18. doi:10.36733/medicamento.v7i1.1497