Evaluation of Antidiabetic Effects of Watermelon Rind Extract: Integrative Computational Simulations and In Vitro Studies
Main Article Content
Abstract
Diabetes mellitus is a common metabolic disorder characterized by chronic hyperglycemia, requiring the development of alternative therapies to improve glycemic control. Watermelon rind (Citrullus lanatus (Thunb.) Matsum), usually discarded as waste, contains various bioactive compounds potentially having anti-diabetic benefits. This study aimed to evaluate the antidiabetic potential of watermelon rind extract through a comprehensive approach, including secondary metabolite content profiling, Fourier transform infrared spectroscopy (FTIR) analysis, total flavonoid content determination, molecular docking assay, and in vitro enzyme inhibition assay targeting α-glucosidase. Preliminary phytochemical screening showed the presence of major secondary metabolites such as flavonoids, saponins, and phenolic acids. FTIR analysis confirmed the presence of functional groups typical of these bioactive compounds, including hydroxyl, carbonyl, and aromatic groups.
[See the download for the complete Abstract]
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Taylor R. Type 2 diabetes: aetiology and reversibility. Diabetes Care. 2013; 36(4):1047-1055. doi:10.2337/dc12-1805
Henning RJ. Type-2 diabetes mellitus and cardiovascular disease. Future Cardiol. 2018; 14(6):491-509. doi:10.2217/fca-2018-0045
Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2019; 20(18):2229-2235. doi:10.1080/14656566.2019.1672660
Ndisang JF, Vannacci A, Rastogi S. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. J Diabetes Res. 2017; 2017:1478294. doi:10.1155/2017/1478294
DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Hear. 2015; 2(1):e000327-e000327. doi:10.1136/openhrt-2015-000327
Lolok N, Sumiwi SA, Ramadhan DSF, Levita J, Sahidin I. Molecular dynamics study of stigmasterol and beta-sitosterol of Morinda citrifolia L. towards α-amylase and α-glucosidase. J Biomol Struct Dyn. 2024; 42(4):1952-1955.
Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev Med Chem. 2010; 10(4):315-331. doi:10.2174/138955710791331007
Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J Biomol Struct Dyn. 2020; 0(0):1-15. doi:10.1080/07391102.2020.1801507
Balogun O, Otieno D, Brownmiller CR, Lee SO, Kang HW. Effect of Watermelon (Citrullus lanatus) Extract on Carbohydrates-Hydrolyzing Enzymes In Vitro. Agriculture. 2022; 12(6). doi:10.3390/agriculture12060772
Rotimi DE, Asaleye RM. Impact of Watermelon (Citrallus lanatus) on Male Fertility. JBRA Assist Reprod. 2023; 27(4):702-708. doi:10.5935/1518-0557.20220075
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv. 2023; 13(7):4436-4475. doi:10.1039/d2ra07977a
Ramadhan DSF, Siharis F, Abdurrahman S, Isrul M, Fakih TM. In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease. J Biomol Struct Dyn. 2022; 40(22):11526-11532. doi: 10.1080/07391102.2021.1959405.
Minh TN, Xuan TD, Tran HD, Van TM, Andriana Y, Khanh TD, Quan NV, Ahmad A. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules. 2019; 24(5):889. doi: 10.3390/molecules24050889.
Emami F, Aliomrani M, Tangestaninejad S, Kazemian H, Moradi M, Rostami M. Copper-Curcumin-Bipyridine Dicarboxylate Complexes as Anticancer Candidates. Chem Biodivers.2022;19(10):e202200202.doi:10.1002/cbdv.202200202
Sahidin I, Sadarun B, Aslan LOM, Wahyuni, Hajrul Malaka M, Fristiohady A. Structural relationship among steroids from Sulawesi Tenggara’s sponge Clathria sp. and their radical scavenger activity. IOP Conf Ser Earth Environ Sci. 2019; 370(1). doi:10.1088/1755-1315/370/1/012027
Serralheiro ML, Guedes R, Fadel SR, Bendif H. Data on identification of primary and secondary metabolites in aqueous extract of Verbascum betonicifolium. Data Br. 2020; 32:106146. doi:10.1016/j.dib.2020.106146
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-2791. doi: 10.1002/jcc.21256.
Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Kalro T, Liang Y, Lowe R,
Namkoong H, Peisach E, Periskova I, Prlic A, Randle C, Rose A, Rose P, Sala R, Sekharan M, Shao C, Tan L, Tao
YP, Valasatava Y, Voigt M, Westbrook J, Woo J, Yang H, Young J, Zhuravleva M, Zardecki C. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019; 47(D1):D464-D474. doi: 10.1093/nar/gky1004.
Hikmawati D, Fakih TM, Sutedja E, Dwiyana RF, atik N, Ramadhan DSF. Pharmacophore-guided virtual screening and dynamic simulation of Kallikrein-5 inhibitor: Discovery of potential molecules for rosacea therapy. Informatics Med Unlocked.2022; 28:100844.doi:https://doi.org/10.1016/j.imu.2022.
Reiner Ž, Hatamipour M, Banach M, Pirro M, Al-Rasadi K, Jamialahmadi T, Radenkovic D, Montecucco F, Sahebkar A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci. 2020; 16(3):490-496. doi: 10.5114/aoms.2020.94655.
Pitaloka DA, Ramadhan DS, Arfan, Chaidir L, Fakih TM. Docking-Based Virtual Screening and Molecular Dynamics Simulations of Quercetin Analogs as Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors of Mycobacterium tuberculosis. Sci Pharm. 2021; 89(2):20. doi:10.3390/scipharm89020020
Várady M, Tauchen J, Fraňková A, Klouček P, Popelka P. Effect of method of processing specialty coffee beans (natural, washed, honey, fermentation, maceration) on bioactive and volatile compounds. LWT. 2022; 172:114245. doi:https://doi.org/10.1016/j.lwt.2022.114245
Nurisyah, Ramadhan DSF, Dewi R, Asikin A, Daswi DR, Adam A, Chaerunnimah, Sunarto, Rafika, Artati, Fakih TM. Targeting EGFR allosteric site with marine-natural products of Clathria Sp.: A computational approach. Curr Res Struct Biol. 2024; 7:100125. doi 10.1016/j.crstbi.2024.100125.
Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018; 23(5):1-17. doi:10.3390/molecules23051038
Reynaldi MA, Setiawansyah A. Anti-breast cancer potential of songga plant (Strychnos lucida R.Br): Review of molecular interactions with estrogen receptor-α in silico. Sasambo J Pharm. 2022; 3(1):30-35. doi:10.29303/sjp.v3i1.149
Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018; 23(8):1899. doi:10.3390/molecules23081899
Candra GNH, Wijaya IMAP. Molecular Docking of Kaempferol as Anti-Inflammatory Agent in Atherosclerosis In Silico. J Ilm Medicam. 2021; 7(1):13-18. doi:10.36733/medicamento.v7i1.1497