Antioxidant and Neuroprotective Activities of Phyllanthus emblica L.: A Review

Main Article Content

Novi Ayuwardani
Zaenal M. Sofro
Nanang Fakhrudin
Zullies Ikawati

Abstract

Phyllanthus emblica L., known as Indian gooseberry (Euphorbiaceae), has been used in traditional Indian medicine for its benefits in treating various diseases. Antioxidant and neuroprotective activities of Phyllanthus emblica L. provide great benefits in medicine. Antioxidants can help lower the risks of many diseases, including neurological conditions, by preventing reactive oxygen species (ROS) and lipid peroxidation. Research on herbal plants as alternative treatments is increasing; hence, the current research trend aims to examine new treatments for these conditions. Scientific research has extensively explored herbal medicine for neurological disorders. Both in vitro and in vivo studies have demonstrated the therapeutic potential of the antioxidant activity of P. emblica in addressing various neurological disorders. This article provides an overview of the roles of antioxidant and neuroprotective activities of P. emblica in treating various neurological and neurodegenerative disorders. It also paves the way for future research in this field by involving chemical compounds as references for understanding the mechanisms of neuroprotective action of P. emblica.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ayuwardani, N., Sofro, Z. M. ., Fakhrudin, N. ., & Ikawati, Z. . (2024). Antioxidant and Neuroprotective Activities of Phyllanthus emblica L.: A Review. Tropical Journal of Natural Product Research (TJNPR), 8(10), 8617-8626. https://doi.org/10.26538/tjnpr/v8i10.2
Section
Articles
Author Biographies

Novi Ayuwardani, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

1, Zaenal M. Sofro2, Nanang Fakhrudin3,4, Zullies Ikawati5*

1Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
2Departement of Physiology, Faculty of Medicine, Nursing, and Public Health, Univeristas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
3Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
4Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
5Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

zullies_ikawati@ugm.ac.id

Nanang Fakhrudin, Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara,Yogyakarta 55281, Indonesia

Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

How to Cite

Ayuwardani, N., Sofro, Z. M. ., Fakhrudin, N. ., & Ikawati, Z. . (2024). Antioxidant and Neuroprotective Activities of Phyllanthus emblica L.: A Review. Tropical Journal of Natural Product Research (TJNPR), 8(10), 8617-8626. https://doi.org/10.26538/tjnpr/v8i10.2

References

Masihuddin M, MA J, Siddiqui A, Chaudhary S. Traditional Uses, Phytochemistry, And Pharmacological Activities Of Amla With Special Reference Of Unani Medicine - An Updated Review. Asian J Pharm Clin Res. 2019;12:70–74.

Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol. 2022;282:114570.

Parvez MK. Natural or Plant Products for the Treatment of Neurological Disorders: Current Knowledge. Curr Drug Metab. 2018;19(5):424–428.

Jhaumeer Laulloo S, Bhowon MG, Chua LS, Gaungoo H. Phytochemical Screening and Antioxidant Properties of Phyllanthus emblica from Mauritius. Chem Nat Compd. 2018;54(1):50–55.

Yamamoto H, Morino K, Mengistu L, Ishibashi T, Kiriyama K, Ikami T, Maegawa H. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line. Oxid Med Cell Longev. 2016;2016:17358.

Li PH, Wang CW, Lu WC, Song TY, Wang CCR. Antioxidant, Anti-Inflammatory Activities, and Neuroprotective Behaviors of Phyllanthus emblica L. Fruit Extracts. Agriculture. 2022;12(5):588.

Jangid G, Mandal G, Kumari U. Effect of nutrients on yield and chemical characteristics of aonla (Emblica officinalis Gaertn) cv. chakiya. J Med Plants Stud. 2019;7(1):106–108.

Sabir SM, Shah RH, Shah AH. Total phenolic and ascorbic acid contents and antioxidant activities of twelve different ecotypes of Phyllanthus emblica from Pakistan. Chiang Mai J Sci. 2017;44(3):904–911.

Gan J, Zhang X, Ma C, Sun L, Feng Y, He Z, Zhang H. Purification of polyphenols from Phyllanthus emblica L. pomace using macroporous resins: Antioxidant activity and potential anti-Alzheimer’s effects. J Food Sci. 2022;87(3):1244–1256.

Moragrega I s., Ríos JL. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies. Planta Med. 2021;87(9):656–685.

Masfria M, Mukhlisyam M, Permata YM, Faizar F. Evaluation of antihyperlipidemic and antidiabetic activity of phyllanthus emblica L. Fruits. Trop J Nat Prod Res. 2021;5(4):668–762.

Cordeiro ML da S, Martins VG de QA, Silva AP da, Rocha HAO, Rachetti V de PS, Scortecci KC. Phenolic Acids as Antidepressant Agents. Nutrients. 2022;14(20):4309.

Gul M, Liu ZW, Iahtisham-Ul-haq, Rabail R, Faheem F, Walayat N, Nawaz A, Shabbir MA, Munekata PE.S, Lorenzo JM, Aadil RM. Functional and Nutraceutical Significance of Amla (Phyllanthus emblica L.): A Review. Antioxidants (Basel). 2022;11(5):816.

Wang W, Yang L, Liu T, Wang J, Wen A, Ding Y. Ellagic acid protects mice against sleep deprivation-induced memory impairment and anxiety by inhibiting TLR4 and activating Nrf2. Aging (Albany NY). 2020;12(11):10457–10472.

Islam ME, Islam KMD, Billah MM, Biswas R, Sohrab MH, Rahman SMM. Antioxidant and anti-inflammatory activity of Heritiera fomes (Buch.-Ham), a mangrove plant of the Sundarbans. Orient Pharm Exp Med. 2019;20(2):189–197.

Gomez S, Anjali C, Kuruvila B, Maneesha PK, Joseph M. Phytochemical constitution and antioxidant activity of functional herbal drink from Indian gooseberry (Emblica officinalis Gaertn.) fruits containing spices and condiments. Food Prod Process Nutr. 2023;5(12):1–13.

Asiimwe JB, Nagendrappa PB, Atukunda EC, Kamatenesi MM, Nambozi G, Tolo CU, Ogwang PE, Sarki AM. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis. Evid Based Complement Altern Med. 2021;2021:9963038.

Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: Health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020 Mar 1;17:100499.

Cahyaningrum PL. Monograf Buah Amla (Phyllanthus emblica L.): Khasiat Antioksidan Dalam Sediaan Dekokta Dan Loloh Ayurveda. Adnyana IMD, Mertha, editors. Bandung: Media Sains Indonesia; 2022. 1–64 p.

Gaire BP, Subedi L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin J Integr Med. 2014;1–8.

Sharif MA, Khan AM, Salekeen R, Rahman MH, Mahmud S, Bibi S, Biswas P, Nazmul Hasan M, Islam KMD, Rahman SMM, Islam ME, Alshammari A, Alharbi M, Hayee A. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J. 2023;31(8):101681.

Variya BC, Bakrania AK, Patel SS. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res. 2016;111:180–200.

Malliga Elangovan, Dhanarajan M, Elangovan I, Malliga Elangovan Research scholar A. Determination of Bioactive Compounds From the Petroleum Ether Leaf Extract of Moringa oleifera and Phyllanthus emblica Using GC-MS Analysis. World J Pharm Res. 2015;4(3):1284–1298.

Tahir I, Khan MR, Shah NA, Aftab M. Evaluation of phytochemicals, antioxidant activity and amelioration of pulmonary fibrosis with Phyllanthus emblica leaves. BMC Complement Altern Med. 2016;16(1):406.

Asmilia N, Fahrimal Y, Abrar M, Rinidar R. Chemical Compounds of Malacca Leaf (Phyllanthus emblica) after Triple Extraction with N-Hexane, Ethyl Acetate, and Ethanol. Sci World J. 2020;2020:2739056.

Singh E, Sharma S, Pareek A, Dwivedi J, Yadav S, Sharma S. Phytochemistry, traditional uses and cancer chemopreventive activity of Amla (Phyllanthus emblica): The Sustainer. J Appl Pharm Sci. 2011;2(1):176–183.

Bansal V, Sharma A, Ghanshyam C, Singla ML. Coupling of chromatographic analyses with pretreatment for the determination of bioactive compounds in Emblica officinalis juice. Anal Methods. 2014;6(2):410–418.

Bansal V, Sharma A, Ghanshyam C, Singla ML. Rapid HPLC Method for Determination of Vitamin C, Phenolic Acids, Hydroxycinnamic Acid, and Flavonoids in Seasonal Samples of Emblica officinalis Juice. J Liq Chromatogr Relat Technol. 2015;38(5):619–624.

Li C, Long P, He M, Han F, Jiang W, Li Y, Hu Y, Wen X. Phyllanthus emblica Linn. fruit polyphenols improve acute paradoxical sleep deprivation-induced cognitive impairment and anxiety via Nrf2 pathway. J Funct Foods. 2023;110:105884.

Avula B, Wang YH, Wang M, Shen YH, Khan IA. Simultaneous determination and characterization of tannins and triterpene saponins from the fruits of various species of terminalia and phyllantus emblica using a UHPLC-UV-MS Method: Application to triphala. Planta Med. 2013;79(2):181–188.

Yan X, Li Q, Jing L, Wu S, Duan W, Chen Y, Chen D, Pan X. Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus. Front Pharmacol. 2022;13:1017268.

Halim B, Syahputra RA, Adenin I, Lubis HP, Mendrofa F, Lie S, Nugraha SE. Determination of Phytochemical Constituent, Antioxidant Activity, Total Phenol and Total Flavonoid of Extract Ethanol Phyllanthus emblica Fruit. Pharmacogn J. 2022 Jan 1;14(1):63–67.

Nambiar SS, Paramesha M, Shetty NP. Comparative analysis of phytochemical profile, antioxidant activities and foam prevention abilities of whole fruit, pulp and seeds of Emblica officinalis. J Food Sci Technol. 2015;52(11):7254–7262.

Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, Alsalamat HA, Bashatwah RM. Reactive Oxygen Species: the Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J Med. 2018;50(3):193.

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol cell Biol. 2020;21(7):363–383.

Li D, Ding Z, Du K, Ye X, Cheng S. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. Oxid Med Cell Longev. 2021;2021:5583215.

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763.

Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants: fact or fiction? CNS Drugs. 2012;26(6):477–490.

Wisastra R, Dekker FJ. Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked. Cancers (Basel). 2014;6(3):1500–1521.

Yashin A, Yashin Y, Xia X, Nemzer B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants. 2017;6(3):70.

Chen HJC, Wu CF, Huang JL. Measurement of urinary excretion of 5-hydroxymethyluracil in human by GC/NICI/MS: Correlation with cigarette smoking, urinary TBARS and etheno DNA adduct. Toxicol Lett. 2005;155(3):403–310.

Sabir SM, Salman SM, Rocha JBT. Antioxidant properties of β-seleno amines against lipid peroxidation in rat brain and liver. Environ Toxicol Pharmacol. 2012;34(2):446–453.

Gupta YK, Briyal S. Protective effect of vineatrol against kainic acid induced seizures, oxidative stress and on the expression of heat shock proteins in rats. Eur Neuropsychopharmacol. 2006;16(2):85–91.

Sharma M, Gupta YK. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychopharmacol. 2003;13(4):241–247.

Kellogg M, Meador KJ. Neurodevelopmental Effects of Antiepileptic Drugs. Neurochem Res. 2017;42(7):2065.

Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–265.

Mohd Sairazi NS, Sirajudeen KNS. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. Evid Based Complement Altern Med. 2020;2020:1-30.

Van Schependom J, D’haeseleer M. Advances in Neurodegenerative Diseases. J Clin Med. 2023;12(5):1–6.

Wang Y, Pan Y, Li H. What is brain health and why is it important? BMJ. 2020;371.

Wang L, Cai X, Shi M, Xue L, Kuang S, Xu R, Qi W, Li Y, Ma X, Zhang R, Hong F, Ye H, Chen L. Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson’s disease via the activation of Nrf2/keap1 pathway. Eur J Med Chem. 2020;199:112385.

Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants. 2022;12(1):94.

Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. Int J Mol Sci. 2020;21(19):7152.

Bhat S, Kamal M, Yarla N, Ashraf G. Synopsis on Managment Strategies for Neurodegenerative Disorders: Challenges from Bench to Bedside in Successful Drug Discovery and Development. Curr Top Med Chem. 2017;17(12):1371–1378.

Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci 2001 210. 2001;2(10):734–744.

Rosenblat JD, Kakar R, McIntyre RS. The Cognitive Effects of Antidepressants in Major Depressive Disorder: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Int J Neuropsychopharmacol. 2016;19(2): pyw031.

Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci. 2021;11(4):522.

Carter M, Shieh J. Animal Behavior. Guid to Res Tech Neurosci. 2015;39–71.

Kim JJ, Lee HJ, Han JS, Packard MG. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci. 2001;21(14):5222–5228.

Tohidpour A, Morgun A V., Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol. 2017;7:276.

Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019;20(9):2293.

BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med. 2017;17(1):47.

Sarmah D, Verma G, Datta A, Vadak N, Chaudhary A, Kalia K, Bhattacharya P. Phyllanthus emblica L. Regulates BDNF/PI3K Pathway to Modulate Gluta-thione for Mitoprotection and Neuroprotection in a Rodent Model of Is-chemic Stroke. Cent Nerv Syst Agents Med Chem. 2022;22(3):175–187.

Berryhill ME, Peterson D, Jones K, Tanoue R. Cognitive Disorders. Encycl Hum Behav Second Ed. 2012;536–542.

Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–169.

Assuncao N, Sudo FK, Drummond C, De Felice FG, Mattos P. Metabolic Syndrome and cognitive decline in the elderly: A systematic review. PLoS One. 2018;13(3):e0194990.

Husain I, Akhtar M, Shaharyar M, Islamuddin M, Abdin MZ, Akhtar MJ, Najmi AK. High-salt- and cholesterol diet-associated cognitive impairment attenuated by tannins-enriched fraction of Emblica officinalis via inhibiting NF-kB pathway. Inflammopharmacology. 2018;26(1):147–156.

Tan X, Gu J, Zhao B, Wang S, Yuan J, Wang C, Chen J, Liu J, Feng L, Jia X. Ginseng improves cognitive deficit via the RAGE/NF-κB pathway in advanced glycation end product-induced rats. J Ginseng Res. 2015;39(2):116–124.

Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136.

Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.

Jiang N, Zhang Y, Yao C, Liu Y, Chen Y, Chen F, Wang Y, Choudhary MI, Liu X. Tenuifolin ameliorates the sleep deprivation-induced cognitive deficits. Phyther Res. 2023;37(2):464–476.

Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res. 2021;167:105575.

Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel). 2021;10(3):349.

Phochantachinda S, Chatchaisak D, Temviriyanukul P, Chansawang A, Pitchakarn P, Chantong B. Ethanolic Fruit Extract of Emblica officinalis Suppresses Neuroinflammation in Microglia and Promotes Neurite Outgrowth in Neuro2a Cells. Evidence-based Complement Altern Med. 2021;2021:6405987.

Wang X, Wang Z, Cao J, Dong Y, Chen Y. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. Microbiome. 2023;11(1):1–23.

Pires GN, Bezerra AG, Tufik S, Andersen ML. Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis. Sleep Med. 2016;24:109–118.

Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci. 2002;4(1):7–20.

Feng L, Xing H, Zhang K. The therapeutic potential of traditional Chinese medicine in depression: Targeting adult hippocampal neurogenesis. Phytomedicine. 2022;98:153980.

WHO. Mental disorders. [Online]. 2022 [cited 2023 Jan 9]. Available from: https://www.who.int/news-room/fact-sheets/detail/mental-disorders.

B.Dattatray P, A.Padmaja M, N.Nirmala R. Antidepressant Activity Of Aqueous Extracts Of Fruits Of Terminalia chebula and Phyllanthus emblica In Behavioural Models Of Depression: Involvement Of Monoaminergic System. Int J Pharm Pharm Sci. 2014;6(8):615–620.

Dhingra D, Joshi P, Gupta A, Chhillar R. Possible Involvement of Monoaminergic Neurotransmission in Antidepressant-like activity of Emblica officinalis Fruits in Mice. CNS Neurosci Ther. 2012;18(5):419–425.

Sharma R, Nain P. Evaluation of antidepressant like activity of Emblica officinalis Fruit extract on mice. J Pharm Res. 2011;4(2):514–516.

Meador KJ. Cognitive outcomes and predictive factors in epilepsy. Neurology. 2002;58(8 Suppl 5):S21–826.

Gröticke I, Hoffmann K, Löscher W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol. 2007;207(2):329–349.

Golechha M, Bhatia J, Arya DS. Hydroalcoholic extract of Emblica officinalis Gaertn. affords protection against PTZ-induced seizures, oxidative stress and cognitive impairment in rats. Indian J Exp Bio. 2010;48(5):474–478.

Golechha M, Bhatia J, Ojha S, Arya DS. Hydroalcoholic extract of Emblica officinalis protects against kainic acid-induced status epilepticus in rats: Evidence for an antioxidant, anti-inflammatory, and neuroprotective intervention. Pharm Biol. 2011;49(11):1128–1136.

Rao R, Prakash A, Medhi. Role of different cytokines and seizure susceptibility: a new dimension towards epilepsy research. Indian J Exp Biol. 2009;47(8):625–634.

Sapkota BK, Khadayat K, Sharma K, Raut BK, Aryal D, Thapa BB, Parajuli N. Phytochemical Analysis and Antioxidant and Antidiabetic Activities of Extracts from Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica. Adv Pharmacol Pharm Sci. 2022;2022:4929824.

Patel SK, Shutter AK, Patil R, Desangi A, Malali V, Patil J, Patil S, Das KK, Parvatikar PP. In-Vitro Antioxidant, Anti-Inflammatory and Cytotoxic effects of different Solvent Extraction Terminalia chebula, Terminalia billerica, Phyllanthus emblica. Res J Pharm Technol. 2022;15(7):2940–2944.

Chahal AK, Chandan G, Kumar R, Chhillar AK, Saini AK, Saini R V. Bioactive constituents of Emblica officinalis overcome oxidative stress in mammalian cells by inhibiting hyperoxidation of peroxiredoxins. J Food Biochem. 2020;44(2):e13115.

Rajalakshmi S, Vijayakumar S, Praseetha PK. Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. Gene Reports. 2019;17:100545.

Packirisamy RM, Bobby Z, Panneerselvam S, Koshy SM, Jacob SE. Metabolomic Analysis and Antioxidant Effect of Amla (Emblica officinalis) Extract in Preventing Oxidative Stress-Induced Red Cell Damage and Plasma Protein Alterations: An In Vitro Study. J Med Food. 2018;21(1):81–89.

Bariya AR, Patel AS, Gamit VV, Bhedi KR, Parmar RB. Assessment of Antioxidant and Sensory Properties of Amla (Emblica officinalis) Fruit and Seed Coat Powder Incorporated Cooked Goat Meat Patties. Int J Curr Microbiol Appl Sci. 2018;7(7):3306–3318.

Saha S, Verma RJ. Antioxidant activity of polyphenolic extract of Phyllanthus emblica against lead acetate induced oxidative stress. Toxicol Environ Health Sci. 2015;7(1):82–90.

Tasanarong A, Kongkham S, Itharat A. Antioxidant effect of Phyllanthus emblica extract prevents contrast-induced acute kidney injury. BMC Complement Altern Med. 2014;14(1):1–11.

Juntapremjit S, Janthakhin Y. Effects of Indian Gooseberry Fruit on Anxiety-Related Behaviors and Memory Performance in High-fat Diet-induced Obese Mice. Chiang Mai Univ J Nat Sci. 2021;20(4):1–11.

Wankhar D, Sheela Devi R, Ashok I. Emblica officinalis outcome on noise stress induced behavioural changes in Wistar albino rats. Biomed Prev Nutr. 2014;4(2):219–224.