Identification of Anti-Nutritional Factors and Trypsin Inhibitory Activity of Three Spontaneous Plants: Malva sylvestris L, Cynara cardunculus L, and Spinacia oleracea L

Main Article Content

Nabahat Benmansour
Sihem Belkhiter
Mustapha Mounir Bouhenna
Houcine Boutoumi

Abstract

Malva sylvestris L., Cynara cardunculus L., and Spinacia oleracea L. are spontaneous plants often consumed by humans and animals. Although, these plants possess nutritional and therapeutic value, they may also contain anti-nutritional factors in their carbohydrate fraction and trypsin inhibitors that interfere with protein digestion. This study aims to identify the antinutritional factors, and determine the trypsin inhibitory activity of Malva sylvestris L., Cynara cardunculus L., and Spinacia oleracea L. The sugar contents of the plants’ ethanol extracts were determined using the Anthrone and Ortho-Toluidine colorimetric methods. Specific monosaccharides and oligosaccharides were identified by thin layer chromatography (TLC). The polysaccharides (starch and cellulose) contents were also assessed. The trypsin inhibitory activity was evaluated according to standard procedures. The results showed that the sugar contents of the plants ranged from 0.14 to 0.34 g/100 g dw. TLC analysis revealed the presence of sucrose in all the three plant extracts, while two oligosaccharides; raffinose and stachyose were identified in M. sylvestris and S. oleracea. The extracts exhibited significant trypsin inhibitory activity with C. cardunculus demonstrating the highest inhibitory effect with IC50 value of 4.92 mg/mL, while the IC50 values for M. sylvestris and S. oleracea where 9.26 mg/mL and 12.24 mg/mL, respectively. The presence of these anti-nutritional factors may interfere with digestion in both humans and animals, hence the need for caution in the use of these plants for medicinal purposes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Benmansour, N., Belkhiter, S., Bouhenna, M. M., & Boutoumi, H. (2024). Identification of Anti-Nutritional Factors and Trypsin Inhibitory Activity of Three Spontaneous Plants: Malva sylvestris L, Cynara cardunculus L, and Spinacia oleracea L. Tropical Journal of Natural Product Research (TJNPR), 8(9), 8504-8509. https://doi.org/10.26538/tjnpr/v8i9.37
Section
Articles
Author Biographies

Sihem Belkhiter, University Saad Dahleb Blida1, BP270, Soumaa, Blida. Algeria

Laboratory of Phytopathology and Molecular Biology, National Higher School of Agronomy, ENSA, Algiers 16004, Algeria

Houcine Boutoumi, University Saad Dahleb Blida1, BP270, Soumaa, Blida. Algeria

Chemical Engineering Laboratory, Department of Process Engineering, BP270, Soumaa, Blida Algeria

How to Cite

Benmansour, N., Belkhiter, S., Bouhenna, M. M., & Boutoumi, H. (2024). Identification of Anti-Nutritional Factors and Trypsin Inhibitory Activity of Three Spontaneous Plants: Malva sylvestris L, Cynara cardunculus L, and Spinacia oleracea L. Tropical Journal of Natural Product Research (TJNPR), 8(9), 8504-8509. https://doi.org/10.26538/tjnpr/v8i9.37

References

Ryu H, Ryu M, Jeon EJ, Park YJ, Kang B, Ono Y, Kim OK, Lee SJ. Malva sylvestris, a New Host of Puccinia modiolae in Korea. Plant Dis. 2023;

(10):3285.

Panchenko K and Pospielov S. The effect of Malva sylvestris L. plant density on its productivity. Grail Sci. 2023; (25):160-162.

Batiha GES, Tene ST, Teibo JO, Shaheen HM, Oluwatoba OS, Teibo TKA, Al-kuraishy HM, AlGarbee AI, Alexiou A, Papadakis M. The phytochemical profiling, pharmacological activities, and safety of Malva sylvestris: a review. Naunyn Schmiedebergs Arch Pharmacol. 2023; 396:421-440.

Pappalardo HD, Toscano V, Puglia GD, Genovese C, Raccuia SA. Cynara cardunculus L. as a multipurpose crop for plant secondary metabolites production in marginal stressed lands. Front Plant Sci. 2020; 11:240.

Mateus V, Estarreja J, Silva I, Barracosa P, TeixeiraLemos E, Pinto R. Effect of Cynara cardunculus L. var. altilis (DC) in Inflammatory Bowel Disease. Appl Sci. 2021; 11:1629.

Baba Aissa F. Encyclopédie des plantes utiles (Flore d’Algérie et du Maghreb). Substances végétales d’Afrique, d’Orient et d’Occident. (1ère éd.). Ed. Edas; 1999. 178 p.

Hussain F, Kayani HUR, Bashir S. Antioxidant, antidiabetic and structural analysis of Spinacia oleracea leaf. Pak J Biochem Biotechnol. 2022;

(1):1-11.

Ammarellou A and Mozaffarian V. The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.). Sci Rep. 2021; 11(1):22169.

Pomar C and Remus A. 242 The Impact of Feed Formulation and Feeding Methods on Pig and Poultry Production on the Environment. J Anim Sci. 2022; 100(3):124.

Popova A and Mihaylova D. Antinutrients in Plantbased Foods: A Review. Open Biotechnol J. 2019; 13:68-76.

El-Ramady H, Hajdu P, Törős G, Badgar K, Llanaj X, Kiss A, Abdalla N, Alaa Omara AD, Elsakhawy T, Elbasiouny H, Elbehiry F, Amer M, El-Mahrouk MS, Prokisch J. Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainab. 2022; 14(14):8329-8329.

Cerning-Beroard J. A note of sugar determination by the Anthrone method. Cereal Chem. 1975; 52:857-860.

Ghebregzabher M, Rufini S, Monaldi B, Lato M. Thin-layer chromatography of carbohydrates. J Chromatogr. 1976; 127(2):133-162.

Audigié C, Figarella J, Zonszain F. Manipulation d'analyse biochimique. (1st ed ). Paris. 1980. 274 p.

Hodge JE and Hofreiter BT. Carbohydrates. In: Whistler RL and Miller JNB (eds.). Methods in carbohydrate chemistry. New York: Academic Press; 1962. 17-22 p.

Kakade ML, Rackis JJ, McGhee JG, Puski G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved

procedure. Cereal Chem. 1974; 51:376.

Lara-Cruz GA and Jaramillo-Botero A. Molecular Level Sucrose Quantification: A Critical Review. Sensors. 2022; 22:9511.

Mandim F, Petropoulos SA, Fernandes Â, SantosBuelga C, Ferreira ICFR, Barros L. Chemical Composition of Cynara Cardunculus L. var. altilis Heads: The Impact of Harvesting Time. Agron. 2020; 10(8):1088.

Petkova N, Popova A, Alexieva I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. J Med Plants Stud. 2019; 7(1):96-99.

Pereira C, Dias MI, Petropoulos SA, Plexida S, Chrysargyris A, Tzortzakis N, Calhelha RC, IvanovM, Stojković D, Soković M, Barros L, C F R Ferreira I. The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules. 2019; 24(24):4494.

Sanyal R, Pradhan B, Jawed DM, Ghosh T, Yadav S, Bera, B, Behera TK, Pradhan S. Spatio-temporal expression pattern of raffinose synthase genes determine the levels of raffinose family oligosaccharides in peanut (Arachis hypogaea L.) 22. seed. Sci Rep. 2023; 13(795).

https://doi.org/10.1038/s41598-023-27448-2

Degli Agosti R and Greppin H. Extraction, identification and assay of sugars in Spinach (Spinacia oleracea cv. Nobel) petioles during photoperiodic acclimation. Bot Helv. 1987; 97:329-340.

Sarmiento-Tomalá GM, Miranda-Martínez M, Gutiérrez-Gaitén YI, Delgado-Hernández R. Chemical Study, Antioxidant Capacity, and Hypoglycemic Activity of Malva pseudolavatera Webb & Berthel and Malva sylvestris L. (Malvaceae), Grown in Ecuador. Trop J Nat Prod Res. 2020; 4(12):1064-1071.

Petropoulos SA, Pereira C, Ntatsi G, Danalatos N , Barros L, Ferreira ICFR. Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem. 2018; 267:296–302.

Bennett KA, Turner LM, Millward S, Moss SEW, Hall AJ. Obtaining accurate glucose measurements from wild animals under field conditions: comparing a hand-held glucometer with a standard laboratory technique in grey seals. Conserv Physiol. 2017; 5(1):cox013.

Silva LR, Jacinto TA, Coutinho P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods. 2022; 11:336.

Cho YG and Kang KK. Functional Analysis of Starch Metabolism in Plants. Plants. 2020; 9(9):1152.

Proietti S, Paradiso R, Moscatello S, Saccardo F, Battistelli A. Light Intensity Affects the Assimilation Rate and Carbohydrates Partitionin in Spinach Grown in a Controlled Environment. Plants. 2023; 12:804.

Sabri FZ, Belarbi M, Sabri S, Alsayadi MMS. Phytochemical Screening and identification of some compounds from Mallow. J Nat Prod Plant Resour. 2012; 2(4):512-516.

Francaviglia R, Bruno A, Falcucci M, Farina R, Renzi G, Russo DE, Sepe L, Neri U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur J Agron. 2016; 72:10–19.

Mousavi SM, Hashemi SA, Behbudi G, Mazraedoost S, Gholami A, Omidifar N, Babapoor A, Rumjit NP. A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evid-Based Complement Alternat Med. 2021; 2021: 5548404.

Yacout MHM. Anti-nutritional factors & its roles in animal nutrition. J Dairy Vet Anim Res. 2016; 4 (1):237-239.

Kunitz M. Crystalline soybean trypsin inhibitor. J Gen Physiol. 1947; 30(4):291-310.