Phytochemical Analysis and Profiling of Possible Compounds from Simarouba glauca Leaf Extracts

Main Article Content

Waleed M. Aljawobaei
Thippeswamy N. Boramuthi
Rajeshwara N. Achur

Abstract

Simarouba glauca is one of the important medicinal plants used in the treatment of many diseases by traditional healers. In particular, it has medicinal properties such as anti-inflammatory, antimicrobial, antioxidant, antimalarial, skin-moisturizing and antidiabetic potential. Despite having potential medicinal value, the detailed analysis of its phytoconstituents and the systematic evaluation of its biological activities is lacking. Thus, the present study is aimed at the estimation and profiling of bioactive compounds from S. glauca leaves extracts using High-Performance Liquid Chromatography (HPLC) and High-Resolution Liquid Chromatography-Mass Spectrometry (HR-LCMS). The quantitative analysis demonstrated that ethanol was the most effective solvent, extracting significant concentrations of alkaloids (94.17 mg/g), flavonoids (82.36 mg/g), phenols (49.75 mg/g) and saponins (133.21 mg/g). In contrast, aqueous and ethyl acetate extracts exhibited lower concentrations of these phytochemical compounds. HR-LCMS analysis revealed the presence of several bioactive compounds in the ethanolic extract, including kaempferol, quercetin-3β-D glucoside and gallic acid, all known for their antioxidant and antiinflammatory properties. The aqueous extract additionally contained catechin and chlorogenic acid, while azelaic acid was identified in the ethyl acetate extract. These findings suggest that ethanol and water extracts of S. glauca leaves contain a rich array of bioactive ingredients. Future research should be carried out to isolate these compounds and explore their pharmacokinetics and toxicity profiles to develop effective pharmaceutical products.

Article Details

How to Cite
Aljawobaei, W. M., Boramuthi, T. N., & Achur, R. N. (2024). Phytochemical Analysis and Profiling of Possible Compounds from Simarouba glauca Leaf Extracts. Tropical Journal of Natural Product Research (TJNPR), 8(9), 8482–8489. https://doi.org/10.26538/tjnpr/v8i9.34
Section
Articles
Author Biography

Rajeshwara N. Achur, Department of Biochemistry, Kuvempu University, Karnataka, Shimoga 577451, India

Invited Research Fellow, INTI International University, Malaysia

References

Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev. 2020; 121(6):3495–3560. Doi: 10.1021/acs.chemrev.0c00922

Beyene B, Beyene B, Deribe H. Review on application and management of medicinal plants for the livelihood of the local community. J Resour. Dev. Manag. 2016;22(1):33–39.

Jafari M, Wang Y, Amiryousefi A, Tang J. Unsupervised learning and multipartite network models: a promising approach for understanding traditional medicine. Front. Pharmacol. 2020;26(11):1319. Doi.org/10.3389/fphar.2020.01319

Salim MA, Ranjitkar S, Hart R, Khan T, Ali S, Kiran C, Parveen A, Batool Z, Bano S, Xu J. Regional trade of medicinal plants has facilitated the retention of traditional knowledge: case study in Gilgit-Baltistan Pakistan. J Ethnobiol Ethnomed. 2019; 15:1–33.

Aryantini D, Astuti P, Yuniarti N, Wahyuono S. Extraction and Isolation of Phytochemicals from Kaempferia rotunda Linn. (White Turmeric) for Pharmacological Application: A Review. J Nat Prod Res. 2022;6 (9):1359. Doi:10.26538/tjnpr/v6i9.2

Sharma A, Sharma S, Kumar A, Kumar V, Sharma AK. Plant secondary metabolites: an introduction of their chemistry and biological significance with physicochemical aspect: In: Sharma, A.K., Sharma, A. (eds) Plant Secondary Metabolites. Springer, Singapore. 2022; 1–45. Doi.org/10.1007/978-981-16-4779-6_1

Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling plant natural chemical diversity for drug discovery purposes. Front.Pharmaco.2020;7(11): 397. doi.org/10.3389/fphar.2020.00397

Bolaji AO, Adeniran OI, Adedayo A, Akinpelu BA. Evaluation of Chemical Composition, Anti-inflammatory, Antioxidant and Cytotoxic Potential of Leaf and Root Extracts of Euphorbia graminae. Trop J Nat Prod Res. 2019;3(6):201–209. Doi.org/10.26538/tjnpr/v3i6. 4

Chen CY, Kao CL, Liu CM. The cancer prevention, antiinflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci. 2018; 19(9):2729. Doi.org/10.3390/ijms19092729

Mazumder K, Aktar A, Roy P, Biswas B, Hossain ME, Sarkar KK, Bachar SC, Ahmed F, Monjur AS, Fukase K. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship. Molecules. 2022; 27(9):3036. Doi.org/10.3390/molecules27093036

Mathew SE, Ramavarma SK, Babu TD, Kuzhivelil BT, Raghavamenon AC. Preliminary assessment on phytochemical composition, cytotoxic and antitumor efficacy of Simarouba glauca DC. Leaf methanolic extract. Ann Phytomed. 2019; 8(2):121–126. Doi.org/10.21276/ap.2019.8.2.15

Manasi PS and Gaikwad DK. A critical review on medicinally important oil yielding plant laxmitaru (Simarouba glauca DC.). J Pharm Sci. 2011; 3(4):1195.

Jamal A. Embracing nature’s therapeutic potential: Herbal medicine. Int J Multidiscip. Sci Arts. 2023; 2(1):117–126. Doi: 10.47709/ijmdsa. v2i1.2620

Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal. 2014; 87:218–228. Doi.org/10.1016/j.jpba.2013.03.007

Rozirwan R, Hananda H, Nugroho RY, Apri R, Khotimah NN, Fauziyah F, Putri WA, Aryawati R. Antioxidant Activity, Total Phenolic, Phytochemical Content, and HPLC Profile of Selected Mangrove Species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. Trop J Nat Prod Res. 2023; 7(7):3482-3489. Doi.org/10.26538/tjnpr/v7i7.29

Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023; 19:e01585. Doi.org/10.1016/j.sciaf. 2023.e01585

Abubakar AR and Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied. Sci. 2020;12(1):1–10. Doi: 10.4103/jpbs.JPBS_175_19

Jiji KN and Muralidharan P. Identification and characterization of phytoconstituents of ethanolic root extract of Clitoria ternatea

L. utilizing HR-LCMS analysis. Plant Sci. Today. 2021;8(3):535–540. Doi.org/10.14719/pst.2021.8.3.1141

Pawar DS and Nasreen S. HR-LCMS of phytoconstituents and antifungal activity of medicinal plants. J Med Plants Stud. 2018; 6(1):173–176.

Dehelean CA, Marcovici I, Soica C, Mioc M, Coricovac D, Iurciuc S, Cretu OM, Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules. 2021;26(4):1109. Doi.org/10.3390/molecules26041109

Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci. Res.2019; 10(2):494–504. Doi: 10.13040/IJPSR.0975-8232.10(2).494-504

Orabueze CI, Adesegun SA, Coker HA. Antinociceptive and Antioxidant Activities of Methanol Extract and Fractions of the Root Bark of Callichilia stenopetala Stapf. (Family Apocynaceae) In Mice. Trop J Nat Prod Res. 2017; 1(3):118–124. Doi.org/10.26538/tjnpr/v1i3.7

Olofinsan K, Abrahamse H, George BP. Therapeutic role of alkaloids and alkaloid derivatives in cancer management. Molecules. 2023;28(14):5578. Doi.org/10.3390/molecules28145578

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020; 25(22):5243. Doi.org/10.3390/molecules25225243

Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules. 2021; 27(1):233. Doi.org/10.3390/molecules27010233

Brindhadevi K, Chidambaram M, Kavitha R, Govindaraj R, Chinnathambi A, Salmen SH, Prabakaran DS, Natesan V. Extraction, antioxidant, and anticancer activity of saponins extracted from Curcuma angustifolia. Appl. Nanosci. 2023;13(3):2063-2071. Doi.org/10.1007/s13204-021-02096-9.

Huang J, Zaynab M, Sharif Y, Khan J, Al-Yahyai R, Sadder M, Ali M, Alotaibi SS, Shuangfei L. Tannins as Antimicrobial Agents: Understanding Toxic Effects on Pathogens. Toxicon. 2024; 20:107812. Doi.org/10.1016/j.toxicon.2024.107812

Puranik SI, Ghagane SC, Nerli RB, Jalalpure SS, Hiremath MB. Evaluation of in vitro antioxidant and anticancer activity of Simarouba glauca leaf extracts on T-24 bladder cancer cell line. Pharmacog J.2017; 9(6):906-912. Doi:10.5530/pj.2017.6.142

Subburaj V, Umaa K, Sankar V. Comparative study of greener and traditional extraction for the identification of sustainable phytocompounds from Simarouba glauca leaves for health benefits. In: Proceedings of the First International Conference on Science, Engineering and Technology Practices for Sustainable Development, ICSETPSD 2023, 17th-18th November 2023, Coimbatore, Tamilnadu, India. 2024. Doi.org/10.4108/eai.17-11-2023.2342855

Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A review of current evidence of its antiviral potential. Int J Mol Sci. 2023; 24(22):16299. Doi.org/10.3390/ijms242216299

Chen X, Zhang C, Wang X, Huo S. Juglanin inhibits IL-1βinduced inflammation in human chondrocytes. Artif Cells Nanomed Biotechnol. 2019; 47(1):3614–3620. Doi.org/10.1080/21691401.2019.1657877

Isemura M. Catechin in human health and disease. Molecules. 2019; 24(3): 528. Doi.org/10.3390/molecules24030528

Zahrani NAAL, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem. 2020; 204:112609. Doi.org/10.1016/j.ejmech.2020.112609

Yun N, Kang JW, Lee SM. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem. 2012; 23(10):1249–1255. Doi.org/10.1016/j.jnutbio.2011.06.018

Wang Z, Xiang H, Dong P, Zhang T, Lu C, Jin T, Chai KY. Pegylated azelaic acid: synthesis, tyrosinase inhibitory activity, antibacterial activity and cytotoxic studies. J Mol Struct. 2021; 1224:129234. Doi.org/10.1016/j.molstruc.2020.129234

Al-Khayri JM, Sahana GR, Nagella P, Joseph B V, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: A review. Molecules. 2022; 27(9):2901. Doi.org/10.3390/molecules27092901

Yang W, Tu H, Tang K, Huang H, Ou S, Wu J. Reynoutrin improves ischemic heart failure in rats via targeting S100A1. Front Pharmacol. 2021; 12:703962. Doi.org/10.3389/fphar.2021.703962

Enechi CO, Okeke SE, Nwankwo EN, Nweze JE, Obilor CP, Okoye CI, Awoh OE. Membrane Stabilization, Albumin Denaturation, Protease Inhibition, and Antioxidant Activity as Possible Mechanisms for the Anti-Inflammatory Effects of Flavonoid-Rich Extract of Peltophorum pterocarpum (DC.) K. Heyne (FREPP) Stem Bark. Trop J Nat Prod Res. 2020; 4(10):812-816. Doi.org/10.26538/tjnpr/v4i10.25

Kar A, Mukherjee SK, Barik S, Hossain ST. Antimicrobial activity of trigonelline hydrochloride against Pseudomonas aeruginosa and its quorum-sensing regulated molecular mechanisms on biofilm formation and virulence. ACS Infect. Dis. 2024; 10(2):746–762. Doi.org/10.1021/acsinfecdis.3c00617

Muhammad NN, Ahmad F, Teoh SL, Yahaya MF. Caffeic acid on metabolic syndrome: a review. Molecules. 2021; 26(18):5490.

Doi.org/10.3390/molecules26185490

Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M. Kaempferol and inflammation: From chemistry to medicine. Pharmacol Res. 2015; 99:1–10. Doi.org/10.1016/j.phrs.2015.05.002

Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, inflammation and immunity. Nutrients. 2016; 8(3):167. Doi.org/10.3390/nu8030167

Li N, Khan SI, Qiu S, Li XC. Synthesis and anti-inflammatory activities of phloroglucinol-based derivatives. Molecules. 2018; 23(12):3232. Doi.org/10.3390/molecules23123232

Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018; 225:342–358. Doi.org/10.1016/j.jep.2018.05.019

Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An overview of the pharmacological activities of scopoletin against different chronic diseases. Pharmacol Res. 2022; 84:106202. Doi.org/10.1016/j.phrs.2022.106202

Das A, Baidya R, Chakraborty T, Samanta AK, Roy S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed Pharmacother. 2021; 142:112004. Doi.org/10.1016/j.biopha.2021.112004

Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018; 108:547–557. Doi.org/10.1016/j.biopha.2018.09.069

Zou Y, Zhang M, Zhang T, Wu J, Wang J, Liu K, Zhan N. Antioxidant and Anti-inflammatory Activities of Cynaroside from Elsholtiza bodinieri. Nat Prod Commun. 2018;13(11): 1501 - 1504. Doi.org/10.1177/1934578X1801301122

Teoh WY, Yong YS, Razali FN, Stephenie S, Dawood Shah M, Tan JK, Gnanaraj C, Mohd Esa N. LC-MS/MS and GC-MS Analysis for the Identification of Bioactive Metabolites Responsible for the Antioxidant and Antibacterial Activities of Lygodium microphyllum (Cav.) R. Br Separations. 2023; 10 (3):215. Doi.org/10.3390/separations10030215

Menacer R, Rekkab S, Kabouche Z. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study. J Mol Model. 2022; 28(8):240. Doi.org/10.1007/s00894-022-05223-7

Sharifi-Rad J, Kamiloglu S, Yeskaliyeva B, Beyatli A, Alfred MA, Salehi B, Calina D, Docea AO, Imran M, Anil Kumar NV, Romero-Román ME. Pharmacological activities of psoralidin: a comprehensive review of the molecular mechanisms of action. Front Pharmacol. 2020; 22(11):571459.

Doi.org/10.3389/fphar.2020.571459