Colocasia esculenta Leaf Extract Mitigates Hippocampal Injury Caused by Lipopolysaccharide in Mice
Main Article Content
Abstract
The hippocampus, a major part of the limbic lobe, is divided into the Cornu Ammonis (CA1-CA4) and the dentate gyrus (DG) and plays major role in memory and learning. It has been determined that the leaves of Colocasia esculenta are rich in minerals, vitamins B complex, E, and ascorbic acid, as well as important amino acids. The study evaluated the therapeutic influence of Colocasia esculenta leaf aqueous extract (CELE) on hippocampal injury elicited by Lipopolysaccharide (LPS) in mice. Six groups of forty-eight mature male albino mice in good condition, weighing between 20 and 24 grams each, were formed. Group I consist of mice that are in good health, while groups II–VI received intraperitoneal injections of lipopolysaccharide at a dose of 0.5 mg/kg for a period of seven days in order to cause neurodegeneration. Group II was given two milliliters of distilled water, Group III was given CELE (400 mg/kg/day), Group IV was given 600mg/kg/day, and Group V was given 800 mg/kg/day of CELE. Group VI was given 2.5 mg/kg/day of donepezil-hydrochloride (DPH). When comparing the LPS-exposed groups to group I, there was a statistically appreciable increase in the acetylcholinesterase and indicators of cellular oxidation in the brain (p<0.05). In the group II, Bielschowsky staining revealed neurofibrillary tangles and senile plaques. The delivery of lipopolysaccharide to mice resulted in inflammation, oxidative stress, anxiety-like behaviors, hippocampus injury, and cognitive impairments. CELE reduces degenerative alterations in the hippocampal region and demonstrates antioxidant, antiinflammatory, and anxiolytic effects.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Daugherty AM, Bender AR, Raz N, Ofen N. Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus. 2016; 26(2):220-228.
Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer's disease: A review. Biotech. 2022; 12(2):55. doi: 10.1007/s13205-022-03123-4.
Josephs KA, Dickson DW, Tosakulwong N, Weigand SD, Murray ME, Petrucelli L, Liesinger AM, Senjem ML, Spychalla AJ, Knopman DS, Parisi JE, Petersen RC, Jack CR, Jr, Whitwell JL. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study. Lancet Neurol. 2017; 16(11):917–924.
Khan MS., Ali T, Kim MW, Jo MH, Chung JI, Kim MO. Anthocyanins Improve Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3β Signaling in LPS-Treated Adult Mice. Mol Neurobiol. 2019; 56:671–687. doi: 10.1007/s12035-018-1101-1.
Aditika, Bhuvnesh Kapoor, Saurabh Singh, Pankaj Kumar. Taro (Colocasia esculenta): Zero wastage orphan food crop for food and nutritional security. South Afr J Bot. 2022; 145:157-169.
Eneh, G., Okon, O.G., Imabong, F.E., Mfoniso, E.J., & Olajumoke, I. (2018). Phytochemicals, nutraceuticals and antinutritional factors assessment of young leaves of Colocasia esculenta (L) Schott. Int. Jour. Sci. Res. Edu., 6(5), 123–129.
Rebecca Nakaziba, Sharon Bright Amanya, Crispin Duncan Sesaazi, Frederick Byarugaba, Jasper OgwalOkeng, Paul E. Alele, "Antimicrobial Bioactivity and GCMS Analysis of Different Extracts of Corchorus olitoriusL Leaves", Sci. W. Jour, vol. 2022, Article ID 3382302, 9 pages, 2022. https://doi.org/10.1155/2022/3382302
Ramirez, Karol; Quesada-Yamasaki, Daniel and Fornaguera-Trias, Jaime. A Protocol to Perform Systemic Lipopolysacharide (LPS) Challenge in Rats. Odovtos [online]. 2019, vol.21, n.1, pp.53-66. ISSN 2215-3411. http://dx.doi.org/10.15517/ijds.v0i0.35510.
Shin CY, Kim HS, Cha KH, Won DH, Lee JY, Jang SW, Sohn UD. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents. BiomolTher (Seoul). 2018 May 1;26(3):274-281. doi: 10.4062/biomolther.2017.189. PMID: 29463072; PMCID: PMC5933894.
Doriane Camille NyonseuNzebang, Marie Ide NgahaNjila, Emma Fortune Bend, Pierre ClaverOundoumOundoum, Brice Landry Koloko, Calvin BogningZangueu, Philippe Belle Ekedi, ModesteSameza, DieudonnéMassomaLembè, Evaluation of the toxicity of Colocasia esculenta
(Aracaceae): Preliminary study of leaves infected by Phytophthoracolocasiae on wistar albinos rats, Biomed. Pharmaco, Volume 99,2018,Pages 1009-1013, ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2017.12.061. (https://www.sciencedirect.com/science/article/pii/S0753
Ellman G. L., Courtney K. D., Andres V. Jr., and Featherstone R. M. (1961), A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88Ð95.
Rahman H., Eswaraiah M. (2008). Simple Spectroscopic Methods for Estimating Brain Neurotransmitters, Antioxidant Enzymes of Laboratory
Animals like Mice: A Review. Pharmatutor Art, 1244. [Google Scholar]
Fujii H, Berliner LJ. Ex vivo EPR detection of nitric oxide in brain tissue. MagnReson Med. 1999 Sep;42(3):599-602. doi: 10.1002/(sici)1522-2594(199909)42:3<599: aidmrm24>3.0.co;2-y. PMID: 10467306.
Varshney R and Kale RF (1990). Effect of calmodulin antagonists on radiation induced lipid peroxidation in microsomes. Int. J. Radiation Biol. 58: 733-743
Adam-vizi V., Seregi M., (1982): Receptor dependent stimulatory effect of noradrenaline on Na+/K+ ATPase in rat brain homogenate: Role of lipid peroxidation. Biochem. Pharmacol., 31: 2231-2236
Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973 Feb 9;179(4073):588-590. doi: 10.1126/science.179.4073.588. PMID: 4686466.
Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione Stransferase activities in rat lung and liver. BiochimBiophysActa. 1979 Jan 4; 582(1):67-78. doi: 10.1016/0304-4165(79)90289-7. PMID: 760819.
Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972 May 25; 247(10):3170–3175. [PubMed] [Google Scholar]
Harold J. Strecker, Glutamic dehydrogenase, Archives of Biochemistry and Biophysics, Volume 46, Issue 1,1953, Pages128-
,ISSN:00039861.https://doi.org/10.1016/0003-9861(53)90176-3.https://www.sciencedirect.com/science/article/pii/0003986153901763
Lucas Silva Tortorelli, Engelke, D. S., Lunardi, P., Souza, T. M. E., Santos-Junior, J. G., Gonçalves, C. A., et al. (2015). Cocaine counteracts LPS-induced hypolocomotion and triggers locomotor sensitization expression. Behav. Brain Res., 287,226-229. https://doi.org/10.1016/j.bbr.2015.03.054.
Hashim, A., Ahmed, M. G., Rahiman, N. B. A., Manikkoth, S., & Leena Pramod, K. (2022). Evaluation of the neuroprotective activity of P. Amarus in attenuating arsenic-induced neurotoxicity – an in vivo study. Phytomed. Plus, 2(3), 100316. https://doi.org/10.1016/j.phyplu.2022.100316
Meng, H. W., Kim, J. H., Kim, H. Y., Lee, A. Y., & Cho, E. J. (2023). Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by
Inhibition of Amyloidogenesis in Mice. Int. jour. Mol. sci, 24(5), 4838. https://doi.org/10.3390/ijms24054838
Kesherwani, R., Kumar, R., Minhas, U., & Rizvi, S. I. (2021). Euglena tuba extract provides protection against lipopolysaccharide-induced inflammatory response and oxidative stress in mice. Biologia, 76(2), 793–798. https://doi.org/10.2478/s11756-020-00623-7
Alagan, A., Jantan, I., Kumolosasi, E., Ogawa, S., Abdullah, M. A., & Azmi, N. (2019). Protective effects of Phyllanthus amarus against lipopolysaccharideinduced neuroinflammation and cognitive impairment in rats. Front.Pharm, 10, Article 632.