In vitro and Molecular Docking Evaluation of the Antibacterial, Antioxidant, and Antidiabetic Effects of Silver Nanoparticles from Cymbopogon citratus Leaf

Main Article Content

Olasunkanmi K. Awote
Kehinde O. Amisu
Olajide S. Anagun
Fifame P. Dohou
Eniola R. Olokunola
Nzubechi O. Elum

Abstract

Diabetes and multidrug-resistant (MDR) bacterial infections remain very common worldwide. This study investigated the antioxidant, antibacterial, and antidiabetic potentials of silver nanoparticles (AgNPs) from Cymbopogon citratus aqueous leaf extract (CCALE). AgNPs were synthesized in a 9:1 of 1 mM AgNO3 solution to CCALE. The synthesis was monitored via colour change and UV-visible spectrophotometry and later characterized using Fourier transform infrared spectroscopy (FTIR), energy dispersive x-ray (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Using standard procedures, gas
chromatography-mass spectrometry (GC-MS) and antioxidant assays (reducing power, ferric reducing antioxidant power, total antioxidant capacity, and DPPH radical scavenging) of AgNPs were performed. Antibacterial activities against MDR bacterial isolates were assessed using the agar-diffusion method. Molecular docking studies were conducted using PyRx and Biovia Discovery Studio with 3D conformers of CCALE phyto-compounds retrieved from PubChem and 11-β-hydroxysteroid and Vaspin proteins from the RCSB Protein Data Bank. The AgNPs showed a light brown colour and a UV-Vis absorption peak at 445 nm. TEM revealed spherical particles (9.22 to 12.54 nm). EDX confirmed significant silver content. FTIR indicated the presence of alkynes, carboxylic acids, and alcohol groups. XRD showed diffraction peaks at 2θ = 38°, 44.5°, and 64.5°, corresponding to the (111), (200), and (220) reflection planes. TGA indicated volatility and thermal stability. The AgNPs demonstrated strong antioxidant and antibacterial activities, particularly against Klebsiella pneumoniae, Salmonella typhi, and Staphylococcus aureus. Stigmasterol exhibited the best binding affinity with the protein targets, suggesting CCALEAgNPs as a potential antioxidant, antibacterial, and antidiabetic drug candidate.

Downloads

Download data is not yet available.

Article Details

How to Cite
Awote, O. K., Amisu, K. O., Anagun, O. S., Dohou, F. P., Olokunola, E. R., & Elum, N. O. (2024). In vitro and Molecular Docking Evaluation of the Antibacterial, Antioxidant, and Antidiabetic Effects of Silver Nanoparticles from Cymbopogon citratus Leaf . Tropical Journal of Natural Product Research (TJNPR), 8(9), 8400-8411. https://doi.org/10.26538/tjnpr/v8i9.23
Section
Articles

How to Cite

Awote, O. K., Amisu, K. O., Anagun, O. S., Dohou, F. P., Olokunola, E. R., & Elum, N. O. (2024). In vitro and Molecular Docking Evaluation of the Antibacterial, Antioxidant, and Antidiabetic Effects of Silver Nanoparticles from Cymbopogon citratus Leaf . Tropical Journal of Natural Product Research (TJNPR), 8(9), 8400-8411. https://doi.org/10.26538/tjnpr/v8i9.23

References

Omran BA and Omran BA. Fundamentals of nanotechnology and nanobiotechnology. Nanobiotechnology: A Multidisciplinary Field of Science. Springer. 2020; 6:1-36p.

Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol. 2019; 124: 148-154.

Sajid M and Płotka-Wasylka J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem J. 2020; 154: 104623.

Teodoro KBR, Migliorini FL, Facure MHM, Sanfelice RC, Martins D, Correa DS. Novel Chemical Sensors Based on Green Composite Materials for Environmental Analysis. Nanosensors Environ. Food Agric. 2021; 1: 109-138.

Awote OK, Kazeem MI, Ojekale AB, Ayanleye OB, Ramoni HT. Prospects of silver nanoparticles (AgNPs) synthesized by Justicia secunda aqueous extracts on diabetes and its related complications. Proc Nig Acad Sci. 2023a; 16(1): 87-105.

Thakur S, Sharma S, Thakur S, Rai R. Green synthesis of copper nanoparticles using Asparagus adscendens roxb. Root and leaf extract and their antimicrobial activities. Int J Curr Microbiol Appl Sci. 2018; 7(4): 683-694.

Christensen L, Vivekanandhan S, Misra M, Kumar Mohanty A. Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. 2011; 2(6): 429-434.

Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M. Golińska P. Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol. 2021; 12: 632505.

Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogs as potential therapeutic agents. Molecules. 2022; 27(2):349.

Laldingliani T, Thangjam NM, Zomuanawma R, Bawitlung L, Pal A and Kumar A. Ethnomedicinal study of medicinal plants used by Mizo tribes in the Champhai district of Mizoram, India. J Ethnobiol Ethnomed. 2022; 18(1): 1-29.

Unuofin JO and Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid Med Cell Longev. 2020; 2020:1356893.

Okaiyeto K and Oguntibeju OO. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. Int. J. Environ. Public Health. 2021; 18(11):5988.

Sahal G, Woerdenbag HJ, Hinrichs WL, Visser A, Tepper PG, Quax WJ, van der Mei HC, Bilkay IS. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemon grass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J Ethnopharmacol. 2020; 246: 112188.

Sen S, Israr M, Singh S, Singh MK, Verma RS, Bawankule DU. Pharmaceutical, cosmeceutical, food additive and agricultural perspectives of Cymbopogon martini: A potential industrial aromatic crop. S Afr J Bot. 2023; 158: 277-291.

Jamshidi-Kia F, Wibowo J P, Elachouri M. The battle between plants as antioxidants with free radicals in the human body. J Herb Med Pharmacol. 2020; 9(3): 191-199.

Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass essential oil components with antimicrobial and anticancer activities. Antioxidants. 2021; 11(1): 20.

Dewanti NPN, Pertiwi AD, Utami EF, Idawati S, Suhada A, Mazlan NAA, Purmafitriah E. Antidiabetic Effect Test of Combination of Ginger (Zingiber officinale), Lemongrass (Cymbopogon citratus ), and Cinnamon (Cinnamomum verum) on Male Mice (Mus musculus). Proc Int Conf Med Technol. 2022; 51: 62.

Kiani HS, Ali A, Zahra S, Hassan ZU, Kubra KT, Azam M, Zahid HF. Phytochemical composition and pharmacological potential of lemongrass (Cymbopogon) and impact on gut microbiota. Appl Chem. 2022; 2(4): 229-246.

Lin MC, Liu CC, Lin YC, Liao CS. Resveratrol protects against cerebral ischemic injury via restraining lipid peroxidation, transition elements, and toxic metal levels, but enhancing antioxidant activity. Antioxidants. 2021; 10(10): 1515.

Loko YLE, MedeganFagla S, Kassa P, Ahouansou CA, Toffa J, Glinma B, Dougnon V, Koukoui O, Djogbenou SL, Tamò M, Gbaguidi F. Bioactivity of essential oils of Cymbopogon citratus (DC) Stapf and Cymbopogonn ardus (L.) W. Watson from Benin against Dinoderus porcellus lesne (Coleoptera: Bostrichidae) infesting yam chips. Int J Trop Insect Sci. 2021; 41: 511-524.

Fatunmibi OO, Njoku IS, Asekun OT, Ogah JO. Chemical composition, antioxidant and antimicrobial activity of the essential oil from the leaves of Cymbopogon citratus . Am J Essent Oil. 2023; 11(1): 01-05.

Awote OK, Adeyemo AG, Apete SK, Awosemo RB, Azeez HD, Salako DS, Kayode BD, Arowolo SO, Olatubosun OS, Olalero FE. Jatropha tanjorensis aqueous extracts synthesized silver nanoparticles possess antidiabetic, antiglycation, antioxidant, and anti-inflammatory potentials. J Res Rev Sci. 2023b; 10: 41-55.

Awote OK, Kanmodi RI, Ebube SC, Abdulganniyyu ZF. Nutritional Profile, GC-MS Analysis and In-silico Anti-diabetic Phytocompounds Candidature of Jatropha gossypifolia Leaf Extracts. Curr Drug Discov Technol. 2024; 21(3): 32-45.

Bhatia D, Mittal A, Malik DK. Antimicrobial potential and in vitro cytotoxicity study of polyvinyl pyrollidone-stabilized silver nanoparticles synthesized from Lysinibacillus boronitolerans. IET Nanobiotechnol. 2021; 15(4): 427-440.

Bano N, Iqbal D, Al Othaim A, Kamal M, Albadrani HM, Algehainy NA, Alyenbaawi H, Alghofaili F, Amir M, Roohi R. Antibacterial efficacy of synthesized silver nanoparticles of Microbacterium proteolyticum LA2 (R) and Streptomyces rochei LA2 (O) against biofilm forming meningitis causing microbes. Sci Rep. 2023; 13(1): 4150.

Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, un NisaAndrabi S, Barabadi H, Mohanta, Y.K., Mostafavi, E. Bioengineering of green-synthesized TAT peptidefunctionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta. 2023; 253: 124026.

Sun L, Zhang Z, Dang H. A novel method for preparation of silver nanoparticles. Mater. Lett. 2003; 57(24-25): 3874-3879.

Awote OK, Anagun OS, Adeyemo AG, Igbalaye JO, Ogun ML, Apete SK, Folami SO, Olalero FE, Ebube SC, Taofeeq MI. Akinloye OO. Green-synthesized silver nanoparticles by using fresh Justicia Secunda, Telfairia occidentalis, and Jatropha tanjorensis aqueous leaf extracts against clinical and environmental bacterial isolates. Asian J Green Chm. 2022: 6(4): 284-296.

Rakib-Uz-Zaman SM, HoqueApu E, Muntasir MN, Mowna SA, Khanom MG, Jahan SS, Akter NR, Khan MA, Shuborna NS, Shams SM, Khan K. Biosynthesis of silver nanoparticles from Cymbopogon citratus leaf extract and evaluation of their antimicrobial properties. Challenges. 2022; 13(1):18.

Odeyemi SW, Ajayi EO, Otunola GA, Afolayan AJ. Silver nanoparticles biosynthesis by Elaeodendron croceum Stem bark and leaves extracts, their anti-bacterial and cytotoxicity activities. Inorg Nano-Met Chem. 2020; 51(3):399-410.

Norashikin A. Preparation of electrospun polyvinylidene fluoride/nanosilver nanofibrous membrane and its antimicrobial potential/Norasikin Ahmad (Doctoral dissertation, University of Malaya). 2018.

Abdul Aziz NS, Isa N, Osman MS, Wan Kamis WZ, So’aib MS, MohdAriff MA. A Mini Review on the Effects of Synthesis Conditions of Bimetallic Ag/Si Nanoparticles on Their Physicochemical Properties. Int J Nanosci Nanotechnol. 2023; 18(4): 219-232.

Wang J, Jia G, Kong H, Li H, Zuo R, Yang Y, Zhang C. Highly efficient luminescence and enhanced stability of nanocomposites by encapsulating perovskite quantum dots in defect-related luminescent silica nanospheres. Appl Surf Sci. 2022; 591: 153258.

Awote OK, Adeyemo AG, Igbalaye JO, Awosemo RB, Ibrahim AB, Abdulrafiu F, Fajobi T. In Vitro Alpha-Amylase Inhibitory Activity, Antioxidant Activity and HPLC Analysis of Eichhornia crassipes (water hyacinth) Methanol Extracts. Trop J Nat Prod Res. 2021; 5(12):2174-2181.

Chavan C, Mulik S, Chavan M, Adnaik R, Patil P. Screening of antioxidant activity and phenolic content of whole plant of Barleria prionitis Linn. Int J Res Ayurv Pharm. 2011; 2(4): 1313-1319.

Menon S, Agarwal H, Kumar SR, Kumar SV. Green synthesis of silver nanoparticles using medicinal plant Acalypha indica leaf extracts and its application as an antioxidant and antimicrobial agent against foodborne pathogens. Int J Appl Pharm. 2017; 9(5): 42-50.

Bolignano D, Cernaro V, Gembillo G, Baggetta R, Buemi M, D’Arrigo G. Antioxidant agents for delaying diabetic kidney disease progression: A systematic review and meta-analysis. PloS One. 2017; 12(6): e0178699.

Logeswari P, Silambarasan S, Abraham J. Synthesis of silver nanoparticles using plant extract and analysis of their antimicrobial property. J Saudi Chem Soc. 2015; 19(3): 311-317.

Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects of antimicrobial activity. Nanomed: Nanotechnol Biol Med. 2016; 12(3): 789-799.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnol. 2005; 16(10): 2346.

Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R. Bacterial resistance to silver nanoparticles and how to overcome it. Nat nanotechnol. 2018; 13(1), 65-71.

Riyaphan J, Pham DC, Leong MK, Weng CF. In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomol. 2021; 1(12): 1877.

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020; 10:766-788.

Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004; 1(4): 337-341.

Sharma AD and Kaur I. Essential oil from Cymbopogon citratus exhibits “anti-aspergillosis” potential: in-silico molecular docking and in vitro studies. Bull Natl Res Cent. 2022; 46(1):23.

Sharom FJ. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2014; 3(4):41.

Awote OK, Apete SK, Igbalaye JO, Adeyemo AG, Dele-osedele PI, Thomas-Akinwale K, Boniwey TS, Ogunbamowo AA, Ebube SC, Folami SO. Phytochemical Screening, Antioxidant, and α-Αmylase Inhibitory Activities of Acacia nilotica Seed Methanol Extract. Adv J Curr Res. 2022; 7(8): 1-27.

Gulwe AB, Ebube SC, Awote OK, Ambhore AN. Molecular Docking Study of Selected Bioactive Compounds in Alzheimer’s Disease using BACE-1 (PDB ID: 5QCU) as Target Protein. J Popul Ther Clin Pharmacol. 2023; 30(3): 787-793.