The Impact of Amphimedon chloros Ethyl Acetate Extract on MDA-MB-231 Cell Lines' Expression of Bax, Cyclin D, Caspase 3, P21, C-myc, and Bcl2: Mechanism of inhibition of the Growth of Cancer Cells
Main Article Content
Abstract
Numerous marine sponge bioactive compounds exhibit diverse pharmacological properties. This study investigated the ethyl acetate extract of Amphimedon chloros for its effects on breast cancer cells (MDA-MB-231), focusing on the expression of key genes involved in apoptosis and cell cycle regulation, including Bax, Cyclin D, caspase 3, p21, C-myc, and Bcl2. The extract's chemical profile was analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS), identifying fourteen compounds such as zamamidine (11.4%), keramamine (10.2%), and methoxyhexadecanoate (9.1%). Cytotoxicity and anticancer activity were assessed on MDA-MB-231 cells and human periodontal ligament fibroblasts (HPLFs). The IC50 of the extract against MDA-MB-231 cells was 3.0 µg/mL, indicating significant cytotoxicity, while it did not affect fibroblast viability at concentrations ranging from 50-200 µg/mL. RT-PCR (Real Time-Polymerase Chain Reaction) analysis revealed that the extract increased the expression of Bax, p21, and caspase 3, and decreased the levels of Bcl2 and Cyclin D in MDA-MB-231 cells. These findings suggest that the extract may inhibit cancer cell proliferation by interfering with growth factors signaling pathways, such as PI3K/Akt (Phosphoinositide 3-Kinase/Protein Kinase B) and MAPK (Mitogen-Activated Protein Kinase). The increase in Bax and p21 expression indicates enhanced apoptosis, while the drastic reduction in c-Myc expression points to potential cell cycle arrest. The results support the potential of A. chloros as an anticancer agent, with selective cytotoxicity towards cancer cells and significant modulation of apoptotic and cell cycle-related genes.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Carson MA, Clarke SA. Bioactive compounds from marine organisms: Potential for bone growth and healing. Mar Drugs 2018;16:340.
Pandey A. Pharmacological significance of marine microbial bioactive compounds. Environ Chem Lett 2019;17:1741–1751.
Hu Y, Chen J, Hu G, Yu J, Zhu X, Lin Y, Chen S, Yuan J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar Drugs 2015;13:202–221.
Hassan WHB, El Sayed ZI, Al-Wahaibi LH, Abdel-Aal MM, Abdel-Mageed WM, Abdelsalam E, Abdelaziz S. Metabolites Profiling and In Vitro Biological Characterization of Different Fractions of Cliona sp. Marine Sponge from the Red Sea Egypt. Molecules 2023;28:1643.
AquaStat FAO. Food and Agriculture Organization of the United Nations. 2017. 2020.
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2005;22:15–61.
Laport MS, Santos OCS, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 2009;10:86–105.
Andriani H, Usman HA, Dewayani BM, Hernowo BS, Bashari MH. Aaptos suberitoides Extract Inhibits Cell Migration in Triple Negative Breast Cancer and Decreases NF-κB and MMP-9: doi. org/10.26538/tjnpr/v4i11. 13. Trop J Nat Prod Res 2020;4:918–921.
Al-Shamayleh W, Qaralleh H, Al-Madadheh OA, Al Qaisi Y, AlSarayreh A. Inhibitory Effect of the Marine Sponge Amphimidon chloros Extracts Against Multidrug-Resistant Bacteria. Trop J Nat Prod Res 2024;8:8061–8067.
Chen Y, Zhou Q, Zhang L, Zhong Y, Fan G, Zhang Z, Wang R, Jin M, Qiu Y, Kong D. Stellettin B induces apoptosis in human chronic myeloid leukaemia cells via targeting PI3K and Stat5. Oncotarget 2017;8:28906.
Chang C-H, Lin B-J, Chen C-H, Nguyen N-L, Hsieh T-H, Su J-H, Chen M-C. Stellettin B induces cell death in bladder cancer via activating the autophagy/DAPK2/apoptosis signaling cascade. Mar Drugs 2023;21:73.
Khleifat, K. M., Qaralleh, H., Al-Limoun, M. O., Al-Khlifeh, E. M., Aladaileh, S. A., Tawarah, N., & Almajali, I. S. Antibacterial and Antioxidant Activities of Local Honey from Jordan: Trop J Nat Prod Res. 2021, 5(3), 470-477.
Pratima NA, Gadikar R. Liquid chromatography-mass spectrometry and its applications: a brief review. Arch Org Inorg Chem Sci 2018;1:26–34.
Abu Hajleh MN, Al-limoun M, Al-Tarawneh A, Hijazin TJ, Alqaraleh M, Khleifat K, Al-Madanat OY, Qaisi Y Al, AlSarayreh A, Al-Samydai A. Synergistic Effects of AgNPs and Biochar: A Potential Combination for Combating Lung Cancer and Pathogenic Bacteria. Molecules 2023;28:4757.
Khleifat K, Abboud MM. Correlation between bacterial haemoglobin gene (vgb) and aeration: their effect on the growth and α‐amylase activity in transformed Enterobacter aerogenes. J Appl Microbiol 2003;94:1052–1058. https://doi.org/10.1046/j.1365-2672.2003.01939.x.
Alqaraleh M, Khleifat KM, Abu Hajleh MN, Farah HS, Ahmed KA-A. Fungal-mediated silver nanoparticle and biochar synergy against colorectal cancer cells and pathogenic bacteria. Antibiotics 2023;12:597.
Qaralleh H, Al-Limoun MO, Khlaifat A, Khleifat KM, AlTawarah N, Alsharafa KY, Abu-Harirah HA. Antibacterial and Antibiofilm Activities of a Traditional Herbal Formula against Respiratory Infection Causing Bacteria. Trop J Nat Prod Res. 2020; 4(9):527-534.
Khleifat KM. Biodegradation of phenol by Actinobacillus sp.: Mathematical interpretation and effect of some growth conditions. Bioremediat J 2007;11:103–112. https://doi.org/https://doi.org/10.1080/10889860701429328.
Khleifat KM, Sharaf EF, Al-limoun MO. Biodegradation of 2-chlorobenzoic acid by Enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediat J 2015;19:207–217. https://doi.org/https://doi.org/10.1080/10889868.2015.1029113.
Shady NH, Fouad MA, Salah Kamel M, Schirmeister T, Abdelmohsen UR. Natural product repertoire of the genus Amphimedon. Mar Drugs 2018;17:19.
Emura C, Higuchi R, Miyamoto T, Van Soest RWM. Amphimelibiosides A− F, Six New Ceramide Dihexosides Isolated from a Japanese Marine Sponge Amphimedon sp. J Org Chem 2005;70:3031–3038.
Tsuda M, Hirano K, Kubota T, Kobayashi J. Pyrinodemin A, a cytotoxic pyridine alkaloid with an isoxazolidine moiety from sponge Amphimedon sp. Tetrahedron Lett 1999;40:4819–4820.
Tsukamoto S, Takahashi M, Matsunaga S, Fusetani N, Van Soest RWM. Hachijodines A− G: seven new cytotoxic 3-alkylpyridine alkaloids from two marine sponges of the Genera Xestospongia and Amphimedon. J Nat Prod 2000;63:682–684.
Yamada M, Takahashi Y, Kubota T, Fromont J, Ishiyama A, Otoguro K, Yamada H, Ōmura S, Kobayashi J. Zamamidine C, 3, 4-dihydro-6-hydroxy-10, 11-epoxymanzamine A, and 3, 4-dihydromanzamine J N-oxide, new manzamine alkaloids from sponge Amphimedon sp. Tetrahedron 2009;65:2313–2317.
Kubota T, Kamijyo Y, Takahashi-Nakaguchi A, Fromont J, Gonoi T, Kobayashi J. Zamamiphidin A, a new manzamine-related alkaloid from an Okinawan marine sponge Amphimedon sp. Org Lett 2013;15:610–612.
Takekawa Y, Matsunaga S, van Soest RWM, Fusetani N. Amphimedosides, 3-alkylpyridine glycosides from a marine sponge Amphimedon sp. J Nat Prod 2006;69:1503–1505.
Kubota T, Nakamura K, Kurimoto S, Sakai K, Fromont J, Gonoi T, Kobayashi J. Zamamidine D, a manzamine alkaloid from an Okinawan Amphimedon sp. marine sponge. J Nat Prod 2017;80:1196–1199.
Sakurada T, Gill MB, Frausto S, Copits B, Noguchi K, Shimamoto K, Swanson GT, Sakai R. Novel N-methylated 8-oxoisoguanines from Pacific sponges with diverse neuroactivities. J Med Chem 2010;53:6089–6099.
Nemoto T, Yoshino G, Ojika M, Sakagami Y. Amphimic acids and related long-chain fatty acids as DNA topoisomerase I inhibitors from an Australian sponge, Amphimedon sp.: Isolation, structure, synthesis, and biological evaluation. Tetrahedron 1997;53:16699–16710.
Ovenden SPB, Capon RJ, Lacey E, Gill JH, Friedel T, Wadsworth D. Amphilactams A− D: novel nematocides from Southern Australian Marine sponges of the Genus Amphimedon. J Org Chem 1999;64:1140–1144.
Lim JE, Chung E, Son Y. A neuropeptide, Substance-P, directly induces tissue-repairing M2-like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci Rep 2017;7:9417.
Lopez-Serra L, Esteller M. Proteins that bind methylated DNA and human cancer: reading the wrong words. Br J Cancer 2008;98:1881–1885.
Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Protein networks Pathw Anal 2009:123–140.
Hsieh C-C, Hernández-Ledesma B, De Lumen BO. Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chem Biol Interact 2010;186:127–134.
Zovko A, Viktorsson K, Hååg P, Kovalerchick D, Färnegårdh K, Alimonti A, Ilan M, Carmeli S, Lewensohn R. Marine sponge Cribrochalina vasculum compounds activate intrinsic apoptotic signaling and inhibit growth factor signaling cascades in non–small cell lung carcinoma. Mol Cancer Ther 2014;13:2941–2954.
Merecz-Sadowska A, Sitarek P, Śliwiński T, Zajdel R. Anti-inflammatory activity of extracts and pure compounds derived from plants via modulation of signaling pathways, especially PI3K/AKT in macrophages. Int J Mol Sci 2020;21:9605.
Wei J, Gou Z, Wen Y, Luo Q, Huang Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed Pharmacother 2020;129:110484.
Stefani C, Miricescu D, Stanescu-Spinu I-I, Nica RI, Greabu M, Totan AR, Jinga M. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci 2021;22:10260.
Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science (80) 2000;287:1606–1609.
Jacobs E, Mills JD, Janitz M. The role of RNA structure in posttranscriptional regulation of gene expression. J Genet Genomics 2012;39:535–543.
Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ. The p21Cip1 and p27Kip1 CDK ‘inhibitors’ are essential activators of cyclin D‐dependent kinases in murine fibroblasts. EMBO J 1999.
Watcharasit P, Thiantanawat A, Satayavivad J. GSK3 promotes arsenite‐induced apoptosis via facilitation of mitochondria disruption. J Appl Toxicol An Int J 2008;28:466–474.
Qaralleh H, Al-Limoun MO, Khlaifat A, Khleifat KM, AlTawarah N, Alsharafa KY, Abu-Harirah HA. Antibacterial and Antibiofilm Activities of a Traditional Herbal Formula against Respiratory Infection Causing Bacteria. Trop J Nat Prod Res. 2020; 4(9):527-534.
Khleifat, K. M., Qaralleh, H., Al-Limoun, M. O., Al-Khlifeh, E. M., Aladaileh, S. A., Tawarah, N., & Almajali, I. S. (2021). Antibacterial and Antioxidant Activities of Local Honey from Jordan: Trop J Nat Prod Res. 2020, 5(3), 470-477.