In vitro Antioxidant, Mineral Analysis and Antimicrobial Activities of Extract and Fractions from the Aerial Part of Heterotis rotundifolia (Sm.) Jacq. Fel
Main Article Content
Abstract
Heterotis rountidifolia (Sm.) Jacq. Fel, is employed in Nigeria traditional medicine for the treatment of various diseases. The study investigated the antioxidant, mineral composition and antimicrobial activities of aerial part of Heterotis rotundifolia using standard procedures. The proximate composition on dry matter basis showed high carbohydrate (48.41%) and low lipid (0.77%) contents while mineral content revealed that sodium (5.68 mg/100 g) and zinc (4.64 mg/100 g) were the highest. The total caloric value per 100 g was 260.93 kcal. Methanol (ME) fraction exhibited the highest radical scavenging (EC50 = 59.36 µg/mL) and reducing (EC50 = 76.54 µg/mL) activity. Contents of total flavonoids and phenolics were highest in ME and ethyl acetate (EAE) fractions (39.2 mg GAE/g and 183.5 mg RE/g, respectively), while hexane (HE) fraction showed the lowest radical scavenging, ferric reducing and nitric oxide assay (EC50 = 268.56, 87.86, and 98.30 µg/mL, respectively). The minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) against various bacterial and fungal strains using tube dilution method showed strong activity at MIC of 50 mg/mL depicted by n-HE fraction, though lower MBC of 37.5 mg/mL by ME fraction made the ME fraction of better potentials. Gas chromatography-mass spectrum (GC-MS) analysis of the ME fraction revealed 5-Hydroxymethylfurfural (16.87%), Methyl 6-O-[1-methylpropyl]-β-D-galactopyranoside (16.07%), 4H-Pyran-4-one,2,3-dihydro-3,5-dihydroxy- (8.28%), 6-methyl-β-D-glucopyranose, 1,6-anhydro- (6.56%), 2-heptanol (6.82%), stigmastan-3,5-diene (4.32%) amongst others. This research demonstrates that extract and fractions from aerial part of H. rotundifolia possesses antioxidant, antimicrobial and nutritive potentials, albeit with generally weak antifungal activity and, may be attributed to the presence of its phytochemical constituents.
Keywords:
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Hanh DT, Ngu TN, Bao PH, Nguyen NP, Trong PV, Loan LT, Lam DT, Nguyen PH, Khuyen PT, Truong PC, Tran MH. Chemical Composition and Biological Activities of Essential Oil from Plectranthus amboinicus collected in Dak Lak, Vietnam. Trop J. Nat Prod Res. 2023; 7(11): 5203-5210. DOI: http://www.doi.org/10.26538/tjnpr/v7i11.25.
Adinortey MB, Ansah C, Weremfo A, Adinortey CA, Adukpo GE, Ameyaw EO, Nyarko AK. DNA damage protecting activity and antioxidant potential of Launaea taraxacifolia leaves extract. J. Nat Sci Bio Med. 2018; 9(1): 6. DOI: 10.4103/jnsbm.JNSBM_22_17.
Zujko ME, Witkowska AM. Dietary antioxidants and chronic diseases. Antioxidants. 2023; 12(2): 362. https://doi.org/10.3390/ antiox12020362.
Omotoso DR, Olubowale VO, Aina FM, Daramola OO. Phytochemical Profiling of Basella alba Using Gas chromatography-Mass Spectrometry. Trop J. Nat Prod Res. 2024; 8(6): 7561-7565. DOI: https://doi.org/10.26538/tjnpr/v8i6.36.
WHO. WHO priority pathogens list for R & D of new antibiotics. [Online]. 2017 [cited 2024 June 04]. Available from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.
WHO. WHO bacterial priority pathogens list: Bacterial pathogens of public health importance to guide research, development, and strategies to prevent and control antimicrobial resistance. [Online]. 2024 [cited 2024 June 04]. Available from: https://www.who.int/publications/i/item/9789240093461.
Nzima B, Adegoke AA, Ofon UA, Al-Dahmoshi HOM, Saki M, Ndubuisi-Nnaji, UU and Inyang CU. Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microb New Infec. 2020; 38(100803): 1-7.
World Health Organization Traditional Medicines. [Online]. 2008 [cited 2023 Oct. 08]. Available from: http://www.who.int/mediacentre/factsheets/fs134/en/
Pourmorad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol. 2006; 5(11): 1142-1145 URL: http://www.academicjournals.org/AJB.
Ogunka-Nnoka CU, Agwu JA, Igwe FU. Nutrient and Essential Oil Compositions of Heterotis rotundifolia Leaves. Am. J. Biosci. 2020; 8(2): 28-36. doi: 10.11648/j.ajbio.20200802.11.
Rath G, Toure A, Nianga M, Wolfender JL, Hostettmann K. Characterization of Cglycosylflavones from Dissotis rotundifolia by liquid chromatography- UV diode array detection-tandem mass spectrometry. Chromatographia. 1995; 41: 332-34. DOI: https://doi.org/10.1007/BF02688048.
Friday C, Uchennaigwe O, Akwada UC. NMR characterization and free radical scavenging activity of pheophytin ‘A’ from the leaves of Dissotis rotundifolia. Bull. Chem Soc Ethiop. 2021; 35(1): 207-215. DOI: https://dx.doi.org/10.4314/bcse.v35i1.18.
Soyinka JO, Oguntade TO, Onawunmi GO, Idowu TO, Ogundaini AO. Antioxidant and antimicrobial constituents of Dissotis erecta and Dissotis rotundifolia. Niger. J. Pharm Res. 2008; 7(1): 76-82.
Enin GN, Okokon JE, Onukak JS. Phytochemical Screening of Solenostemon monostachyus and the Effect of Extract and Fractions on Castor Oil-Induced Diarrhoea in Rats. Trop. J. Nat Prod Res. 2021; 5(4): 626-629. DOI: 10.26538/tjnpr/v5i4.6.
Zearah SA. Assessment of the antioxidant potential of anthocyanin-rich Extract of eggplant (Solanum melongena L.) and evaluation of its antimicrobial activity. Trop. J. Nat Prod Res. 2024; 8(3), 6558-6562.
Enin GN, Antia BS, Shaibu SE, Nyakno I. Comparison of the chemical composition, nutritional values, total phenolics and flavonoids content of the ripe and unripe Solanum nigrum Linn. Fruits from Nigeria. World J. Pharm Pharm. Sci. 2023; 12(8): 1-18. DOI: 10.20959/wjpps20238-25410.
Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003; 81(3): 321-326.
Subhashini R, Rao UM, Sumathi P, Gunalan G. A comparative phytochemical analysis of cocoa and green tea. Ind. J. Sci Technol. 2010; 3(2): 188-192.
AOAC. Official Methods of Analysis (18th edn). Association of Official Agricultural Chemists, Gaithersburg, MD.
Okafor CE, Ijoma IK, Igboamalu CA, Ezebalu CE, Eze C F, Osita-Chikeze J, Uzor CE, Ekwuekwe AL. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. Bio Technologia. 2024; 105(2): 121.
Ali BM, Boothapandi M, Nasar AS. Nitric oxide, DPPH and hydrogen peroxide radical scavenging activity of TEMPO terminated polyurethane dendrimers: Data supporting antioxidant activity of radical dendrimers. Data in Brief. 2020; 28:104972.
Adinortey MB, Sarfo JK, Adukpo GE, Dzotsi E, Kusi S, Ahmed MA, Abdul-Gafaru, O. Acute and sub-acute oral toxicity assessment of hydro-alcoholic root extract of Paullinia pinnata on haematological and biochemical parameters. Biol Med. 2012; 4(3): 121–125.
Cheesbrough M. District laboratory practice in tropical countries, part 2. Cambridge University Press; 2005.
Kadhim MJ, Mohammed GJ, Hussein H. Analysis of bioactive metabolites from Candida albicans using (GC-MS) and evaluation of antibacterial activity. Int J Pharm Clin Res. 2016; 8(7):655-670.
Aja PM, Alum EU, Ezeani NN, Ibiam UA, Egwu C. Phytochemical evaluation of Dissotis rotundifolia root and leaf. Glob Veter. 2015; 14(3): 418-424.
Abere TA, Okoto PE, Agoreyo FO. Antidiarrhoea and toxicological evaluation of the leaf extract of Dissotis rotundifolia Triana (Melastomataceae). BMC Compl Altern Med. 2010; 10: 7. DOI: https://doi.org/10.1186/1472-6882-10-71.
Khalid W, Arshad MS, Jabeen A, Muhammad Anjum F, Qaisrani TB, Suleria HA. Fiber‐enriched botanicals: A therapeutic tool against certain metabolic ailments. Food Sci Nutr. 2022; 10(10): 3203-18. DOI: 10.1002/fsn3.2920.
Moris JM, Fitzgibbons A, Burnam B, Petty G, Heinold C, Timon C, Koh Y. A high carbohydrate-to-fiber ratio is associated with a low diet quality and high fat mass in young women. Hum. Nutr Metab. 2022; 1(30): 200163.
Antia, BS, Akpan EJ, Okon PA, Umoren, IU. Nutritive and anti-nutritive evaluation of sweet potatoes (Ipomoea batatas) leaves. Pak. J. Nutr. 2005; 5(2): 166-168.
Amata IA. Nutritive value of the leaves of Myrianthus arboreus: a browse plant. Int. J. Agric Res. 2010; 5(8): 576-581. DOI: 10.3923/ijar.2010.576.581.
Enin, GN, Shaibu SE, Ujah GA, Ibu RO, Inangha PG. Phytochemical and Nutritive Composition of Uvaria chamae P. Beauv. Leaves, stem bark and root bark. ChemSearch Journal. 2021; 12: 9-14.
Pascottini OB, Van Schyndel SJ, Spricigo JFW, Carvalho MR, Mion B, Ribeiro E S, LeBlanc SJ. Effect of anti-inflammatory treatment on systemic inflammation, immune function, and endometrial health in postpartum dairy cows. Sci. Rep. 2020; 10(1): 5236. DOI: https://doi.org/10.1038/s41598-020-62103-x.
Becker HM, Deitmer JW. Transport metabolons and acid/base balance in tumor cells. Cancers. 2020; 12(4): 899. DOI: https://doi.org/10.3390/cancers12040899.
Ashurst PR, Arthey D. Fruit processing: Nutrition, Products, and Quality Management (2 edn). Springer New York, NY. 2001.
Akpabio UD, Akpakpan AE, Enin GN. Evaluation of proximate compositions and mineral elements in the star apple peel, pulp and seed. J. Basic. Appl Sci Res. 2012; 2(5)4839-4843.
Murray RK, Granner DK, Mayes PA, Rodwell VW. Harper’s Biochemistry (25th edn). McGraw-Hill, Health Profession Division, USA. 2000.
Arinola OG. Essential trace elements and metal-binding proteins in Nigerian consumers of alcoholic beverages. Pak. J. Nutr. 2008; 7(6): 763-765.
Nwankwo OE, Ezigbo EC, Odewo SA, Obasi ES, Nwefuru MS. Comparative studies of Heterotis rotundifolia (Sm.) Jacq.-Fel. and Dissotis erecta (Guill. & Perr.) Dandy (Melastomataceae) based on macromorpholoy, foliar epidermis and pollen features in Southeastern Nigeria. Trop Plant Res. 2021; 8(1): 31-35.
Singh B, Singh S, Kaur P. Comparative evaluation of antibacterial activity of methanol extracts of selected medicinal plants. J Pharmacogn Phytochem. 2021; 10(1): 2561-2565.
Ali H, Khan AA, Sayed A, Zia M. Antimicrobial activities of solvent extracts of various plants against multiple drug-resistant (MDR) bacteria. J King Saud Univ Sci. 2020; 32(2): 1378-1384.
Nwabor OF, Eze SO, Chukwuma EC. Antimicrobial activity of ethyl acetate leaf extract of selected medicinal plants against pathogenic microorganisms. Plant Arch. 2022; 22(1): 113-121.
Dougnon VT, Klotoé JR, Sènou M, Roko GO, Dougnon G, Fabiyi K, Amadou A, Aniambossou A, Assogba P, Bankolé H, Dougnon J, Baba-Moussa L. Chemical composition, cytotoxicity, and antibacterial activity of selected extracts of Euphorbia hirta, Citrus aurantifolia, and Heterotis rotundifolia on enteropathogenic bacteria. EC Microbiol. 2017; 12(4): 180-195. DOI: 10.1016/j.jep.2020.113662.
Adegoke AA, Komolafe AO. Nasal Colonization of School Children in Ile-Ife by Multiple Antibiotic Resistant Staphylococcus aureus. Int J Biotech All Sci. 2008; 3(1): 317-322.
Al-Tamimi WH, Al-Saadi SA, Burghal AA. Antibacterial activity and GC-MS analysis of baltic amber against pathogenic bacteria. IJAST. 2020; 29(11s): 611-8.
Syed AB, Rahman SF, Sijam K, Omar D. Chemical composition of Piper sarmentosum extracts and antibacterial activity against the plant pathogenic bacteria Pseudomonas fuscovaginae and Xanthomonas oryzae pv. Oryza. JPDP. 2014; 121: 237-42.
Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Res J Pharm Technol. 2022; 15(8): 3523-30.
Sung WS, Jung HJ, Park K, Kim HS, Lee IS, Lee DG. 2, 5-dimethyl-4-hydroxy-3 (2H)-furanone (DMHF); antimicrobial compound with cell cycle arrest in nosocomial pathogens. Life sci. 2007; 80(6): 586-91.
Sharipov BT, Davidova AN, Ryabova AS, Galimzyanova NF, Valeev FA. Synthesis and fungicidal activity of methylsulfanylmethyl ether derivatives of levoglucosenone. Chem. Heterocycl Compd. 2019; 55:31-7.