Plasma-Induced Enhanced Coagulation and Complement Activation of Blood Streams by Platinum Nanoparticles
Main Article Content
Abstract
Catalytic converters have now been largely employed to significantly reduce the levels of carbon-based particles into the atmosphere, however, this approach generates nanoparticles (NPs) that are often released as fine airborne particles into the atmosphere, having abilities to remain suspended in the atmosphere for long durations and find their way into the human lung cells, and eventually into the blood stream. This could result in triggering the body’s innate immune system. In this study, we exposed blood samples from healthy individuals to Platinum nanoparticles and compared the results to the effects induced by the thrombogenic TiO2, to investigate the response mechanisms of the blood cells and innate immune system to these particles. Results showed a clear activation of coagulation system in samples treated with both NPs, compared with untreated blood samples. TiO2 NPs had significantly higher coagulation effect (84% platelet consumption) compared to the platinum NPs (38% platelet consumption), while blood samples without NPs showed only a 14% platelet consumption. Also, TiO2 NPs and Pt NPs induced slightly similar complement activation in blood samples as measured from the generated C3a (921±16.70 µg/L and 826±27.50 µg/L respectively) and sC5b-9 (136±3.46 µg/L and 138±6.49 µg/L respectively) components. However, blood samples without NPs exhibited significantly lower C3a and sC5b-9 components (522±22.50 µg/L and 101±4.70 µg/L respectively). The latter demonstrated the potential risks exposed to by urban dwellers, such as cascading inflammatory and thrombotic responses, there is need for more investigation on the patho-serological events that can be triggered by other airborne fine particles.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
catalysts. J Environ Chem Eng. 2023;11(5):110237. doi:10.1016/J.JECE.2023.110237
Savignan L, Faucher S, Chéry P, Lespes G. Platinum group elements contamination in soils: Review of the current state. Chemosphere. 2021;271:129517. doi:10.1016/J.CHEMOSPHERE.2020.129517
Bocca B, Battistini B, Leso V, Fontana L, Caimi S, Fedele, M. Occupational exposure to metal engineered nanoparticles: a human biomonitoring pilot study involving Italian nanomaterial workers, Toxics. 2023(a); 11(2):120. https://doi.org/10.3390/toxics11020120.
Ramli NH, Nor NM, Abubakar AH, Zakaria ND, Lockman Z, AbdulRazak K. Platinum-based nanoparticles: A review of synthesis methods, surface functionalization, and their applications, Microchem. J. 2024; 200:110280. https://doi.org/10.1016/j.microc.2024.110280.
Jan H, Gul R, Andleeb A, Ullah S, Shah M, Khanum M. A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications, J. Saudi Chem. Soc. 2021; 25(8):101297. https://doi.org/10.1016/j.jscs.2021.101297.
Bocca B, Leso V, Battistini B, Caimi S, Senofonte M, Fedele M. Human biomonitoring and personal air monitoring. An integrated approach to assess exposure of stainless-steel welders to metal-oxide nanoparticles. Environ. Res. 2023(b); 216:114736 https://doi.org/10.1016/j.
envres.2022.114736.
Hadrup N, Sharma AK, Loeschner K, Jacobsen NR. Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: a review. Regul. Toxicol. Pharmacol 2020; 115:104690. https://doi.org/10.1016/j.yrtph.2020.104690.
Alshammari MK, Alshehri MM, Alshehri AM, Alshlali OM, Mahzari AM, Almalki HH. Camptothecin loaded nano-delivery systems in the cancer therapeutic domains: A critical examination of the literature. J. Drug Deliv. Sci. Technol. 2022; 79:104034.
Park HS, Nam SH, Kim J, Shin HS, Suh YD, Hong KS. Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Sci Rep. 2016 Jun 6; 6:27407. doi:10.1038/srep27407.
Filipova Z, Kukutschova J, Miroslav M. Rizika nanomaterial ´ ů, Vol. 1. Univerzita Palack´eho. 2012:ISBN 978-80-244-3201-4. Czech.
Fromell K, Johansson U, Abadgar S, Bourzeix P, Lundholm L, Elihn K. The effect of airborne Palladium nanoparticles on human lung cells, endothelium and blood – A combinatory approach using three in vitro models. Toxicol in Vitro 2023; 89:105586. https://doi.org/10.1016/j.tiv.2023.105586.
Chhay P, Murphy-Marion M, Samson Y, Girard D. Activation of human eosinophils with palladium nanoparticles (Pd NPs): importance of the actin cytoskeleton in Pd NPs-induced cellular adhesion. Environ Toxicol Pharmacol 2018; 57:95–103. https://doi.org/10.1016/j.etap.2017.12.002.
Liz R, Simard JC, Leonardi LBA, Girard D. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol 2015; 28:616-625. DOI:10.1016/j.intimp.2015.06.030.
Babin K, Antoine F, Goncalves DM, Girard D. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol Lett 2013; 221:57-63. DOI:10.1016/j.toxlet.2013.05.010.
Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil Function: From Mechanisms to Disease. Annu Rev Immunol 2012; 30:459-489. DOI:10.1146/annurev-immunol-020711-074942
Scapini P, Cassatella MA. Social networking of human neutrophils within the immune system. Blood 2014; 124:710-719. DOI:10.1182/blood-2014-03-453217.
Olšovská E, Mikušová ML, Tulinská J, Rollerová E, Vilamová Z, Líšková A, et al. Immunotoxicity of stainless-steel nanoparticles obtained after 3D printing, Ecotoxicol. Environ. Saf. 2024; 272:116088. https://doi.org/10.1016/j.ecoenv.2024.116088.
Baravkar PN, Sayyed AA, Rahane CS, Pratinidhi SA, Chate GP, Banerjee SS, et al. Nanoparticle Properties Modulate Their Effect on the Human Blood Functions. BioNanoSci. 2021; 11:816–824. https://doi.org/10.1007/s12668-021-00874-x.
Wang X, Mao Y, Sun C, Zhao Q, Gao Y, Wang S. A versatile gas-generator promoting drug release and oxygen replenishment for amplifying photodynamic-chemotherapy synergetic anti-tumor effects. Biomaterials. 2021;276:120985. doi:10.1016/J.BIOMATERIALS.2021.120985
Volkov IA, Simonenko NP, Efimov AA, Simonenko TL, Vlasov IS, Borisov VI. Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. Appl. Sci. 2021; 11:526. https://doi.org/10.3390/app11020526
Manikandan M, Hasan N, Wu HF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells, Biomat 2013; 34(23): 5833-5842. https://doi.org/10.1016/j.biomaterials.2013.03.077.
Yamagishi Y, Watari A, Hayata Y, Li X, Kondoh M, Yoshioka Y. Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Res Lett. 2013 Sep 23; 8(1):395. doi: 10.1186/1556-276X-8-395.
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(6):e1833. doi:10.1002/WNAN.1833
Ismail NAS, Lee JX, Yusof F. Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells. Antioxidants 2022, Vol 11, Page 986. 2022;11(5):986. doi:10.3390/ANTIOX11050986
Seisenbaeva GA, Fromell K, Vinogradov VV, Terekhov AN, Pakhomov AV, Nilsson B. Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci Rep 2017; 7(1):15448.
https://doi.org/10.1038/s41598-017-15792-w.
Litvak M, Shamanaev A, Zalawadiya S, Matafonov A, Kobrin A, Feener EP. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost. 2023 May; 21(5):1200-1213. doi:10.1016/j.jtha.2022.12.014.
Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res. 2012; 61:1177–1185 (2012). https://doi.org/10.1007/s00011-012-0512-0.
Taterra D, Skinningsrud B, Lauritzen S, Pękala PA, Szwedowski D, Tomaszewska IM. Aluminum Nanoparticles Affect Human Platelet Function In Vitro. Int. J. Mol. Sci. 2023; 24:2547. https://doi.org/10.3390/ijms24032547.
Ali AS, Nageye YA, Bello KE. Investigating the Effects of Aqueous Leaf Extracts from Moringa oleifera and Carica papaya on Chloramphenicol-Induced Anaemia in Wistar Rats. Trop J Nat Prod Res. 2024:8(7):7765-9. Available from: https://www.tjnpr.org/index.php/home/article/view/4406
Ugwu NI, Uche CL, Airaodion AI, Ogbenna AA, Chikezie K, Okite UP, et al. Impact of Corchorus olitorius Leaf Extract on Potassium Bromate-Induced Haematological Parameters Derangement in Rats. Trop J Nat Prod Res. 2024;8(7):7786-92. Available from: https://www.tjnpr.org/index.php/home/article/view/4409