Comparism of Bioactive Components in Hydroethanol Extract of <i>Corchorus olitorius</i> and <i>Amaranthus hybridus</i> Leaves
DOI:
https://doi.org/10.26538/tjnpr/v8i8.34Keywords:
medicinal potential, methyl stearate, hexadecenoic acid, bioactivity, phytochemicals, Gas Chromatography-Mass Spectroscopy analysisAbstract
The importance of dietary vegetables cannot be overemphasised. This study aimed to screen the bioactive compounds present in C. olitorius and A. hybridus hydroethanol (30:70%v/v) extract. A gas chromatography-mass spectrometer (GC-MS) was used for characterising the phytocomponents. A. hybridus had 9 compounds compared to C. olitorius, which had 15 compounds. Neophytadiene, hexadecenoic acid methyl ester, 9-octadecenoic acid methyl ester, phytol, and methyl stearate were present in both extracts. C. olitorius alone contained bicyclo (3,1,1) heptane, 2,6,6 trimethyl, 2-tridecanone, pyridine-3-carboxamide,4-dimethylamino-N-(2,4-difluorophenyl), octadecenal and octadecane 1-etheyloxyl while 2-pentadecanone, 6, 10, 14-trimethyl-, dodecanoic acid, ethyl 9-hexadecenoate and 3, 7, 11, 15-Tetramethyl-2-hexadece-1-ol were present in A. hybridus only. The three main compounds present in C. olitorius were hexadecenoic acid (21.99%), octadecane 1-ethenyloxy (19.51%) and hexadecanal (18.08%). In A. hybridus, hexadecenoic acid (43.75%), methyl stearate (23.43%), and phytol (10.90%) were the most common compounds. The bioactive constituents identified have numerous applications such as antimicrobial, flavour enhancing, anti-tumour, anti-inflammatory, chemo signalling, antidiarrheal, hepatoprotective, antioxidant, cytotoxic, and insecticidal properties.
References
Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M, Busselberg D, Giordano FA, Golubnitschaja O, Kubatka P. Carotenoids in cancer apoptosis—The road from bench to bedside and back. Cancers (Basel). 2020;12(9):2425.
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta S. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci. 2019;76(10):1947–66.
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Busselberg D, Kubatka P. Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers (Basel). 2021;13(1):130.
Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: Possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018; 128:366–375.
Hsieh YS, Yang SF, Sethi G, Hu DN. Natural bioactives in cancer treatment and prevention. Biomed Res Int. 2015; 2015:182835.
Naik NM, Krishnaveni M, Mahadevswamy M, Bheemanna M, Nidoni U, Kumar V, Tejashri K. Characterization of phyto-components with antimicrobial traits in supercritical carbon dioxide and soxhlet Prosopis juliflora leaves extract using GC-MS. Sci Rep. 2023;13(1):4064.
Iweala EEJ, Bankole EO, Iheagwam FN, Dania OE, Ntite UF. Cytotoxic assessment of Xylopia aethiopica [Dun.] A. on human prostate and breast cancer cell lines. Trop J Nat Prod Res. 2021;4(12):1143–1146.
De Campos O.C., Layole M.P., Iheagwam F.N., Rotimi S.O., Chinedu S.N. Phytochemical composition, antioxidant activity and toxicity of aqueous extract of Picralima nitida in Drosophila melanogaster. Trop J Nat Prod Res. 2021;4(12):1147–53.
Biswas M, Das A, Basu S. Flavonoids: The innocuous agents offering protection against Alzheimer’s disease through modulation of proinflammatory and apoptotic pathways. Curr Top Med Chem. 2022;22(9):769–89.
Ngomuo M, Stoilova T, Feyissa T, Ndakidemi PA. Characterisation of morphological diversity of jute mallow (Corchorus spp.). Int J Agron. 2017;2017:1–12.
Ganjare A, Raut N. Nutritional and medicinal potential of Amaranthus spinosus. J Pharmacogn Phytochem. 2019;8(3):3149–56.
Ndukwe GI, Clark PD, Jack IR. In vitro antioxidant and antimicrobial potentials of three extracts of Amaranthus hybridus L. leaf and their phytochemicals. Eur Chem Bull. 2020;9(7):164–73.
Apata JT, Ogunleye SG, Ogunbiyi OJ, Babalola OO. GC-MS analysis and phytochemical screening of n-hexane fraction constituents from the leaf of Clerodendrum volubile P. Beauv. Int J Biosci Tech. 2017;10(11):80–8.
Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med. 2006;27(1):1–93.
Oyugi DA, Ayorinde FO, Gugssa A, Izevbigie EB, Eribo B, Anderson WA. Biological activity and mass spectrometric analysis of Vernonia amygdalina fractions. J Biosci Tech. 2011;2(3):287–304.
Mamza UT, Sodipo OA, Khan IZ. Gas chromatography-mass spectrometry (GC-MS) analysis of bioactive components of Phyllanthus amarus leaves. Int Res J Plant Sci. 2012;3(10):206–15.
Obode OC, Adebayo AH, Li C. Gas chromatography-mass spectrometry analysis and in vitro inhibitory effects of Phoenix dactylifera L. on key enzymes implicated in hypertension. J Pharm Pharmacogn Res. 2020;8(5):475–90.
Amudha M, Rani S. Assessing the bioactive constituents of Cadaba fruticosa (L.) druce through GC-MS. Int J Pharm Pharm Sci. 2014;6(2):383–5.
Mishor E, Amir D, Weiss T, Honigstein D, Weissbrod A, Livne E, Gorodisky L, Karagach S, Ravia A, Snitz K, Karawani D, Zirler R, Weissgross R, Soroka T, Endevelt-Shapira Y, Agron S, Rozenkrantz l, Reshef N, Furman-Haran E, Breer H, Strotmann J, Uebi T, Ozaki M, Sobel N. Sniffing the human body volatile hexadecanal blocks aggression in men but triggers aggression in women. Sci Adv. 2021;7(47).
Pinto ME, Araújo SG, Morais MI, Sa NP, Lima CM, Rosa CA, Siqueira EP, Johann S, Lima LARS. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An Acad Bras Cienc. 2017;89:1671–81.
Lima LARDS, Johann S, Cisalpino PS, Pimenta LPS, Boaventura MAD. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A. St.-Hil.(Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. Rev Soc Bras Med Trop. 2011;44:777–80.
Aygun‐Sunar S, Mandaci S, Koch HG, Murray IV, Goldfine H, Daldal F. Ornithine lipid is required for optimal steady‐state amounts of c‐type cytochromes in Rhodobacter capsulatus. Mol Microbiol. 2006;61(2):418–35.
Iheagwam FN, Israel EN, Kayode KO, De Campos OC, Ogunlana OO, Chinedu SN. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes. Evid.-based Complement Altern Med. 2019;2019:1–14.
Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Shill MC, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicolettti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AWK, El-Demerdash A, Xiao J, Dey P, Yele S, Jozwik A, Strzalkowska N, Marchewka J, Rengasamy KRR, Horbanczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG. Phytol: A review of biomedical activities. Food Chem Toxicol. 2018;121:82–94.
Bhardwaj M, Sali VK, Mani S, Vasanthi HR. Neophytadiene from Turbinaria ornata suppresses LPS-induced inflammatory response in RAW 264.7 macrophages and Sprague Dawley rats. Inflammation. 2020;43(3):937–50.
Selmy A, Hegazy M, El-Hela A, Saleh A, El-Hamouly M. In vitro and in silico studies of Neophytadiene; a diterpene isolated from Aeschynomene elaphroxylon (Guill. &Perr.) Taub. as apoptotic inducer. Egypt J Chem. 2023;66(10):149–161.
Omotoso A. E., Kenneth E, Mkparu K. Chemometric profiling of methanol leaf extract of Cnidoscolus aconitifolius (Euphorbiaceae) using UV-VIS, FTIR and GC-MS techniques. J Med Plants Res. 2014;2(1):6–12.
Charles A, Stanly AL, Joseph M, Ramani A. GC-MS analysis of bioactive components on the bark extract of Alseodaphne semecarpifolia Nees (Lauraceae). Asian J Plant Sci Res. 2011;1(4):25–32.
Okolie N, Falodun A, Davids O. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and it’s potential for the inhibition of lipid peroxidation. Afri J Trad Compl and Altern Med. 2014;11(3):221–7.
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M, Couvreur P. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. Sci Adv. 2020;6(23):eaaz5466.
Krasnova OA, Minaychev V V., Akatov VS, Fadeev RS, Senotov AS, Kobyakova MI, Lomovskaya YV, Lomovskiy AI, Zvyagina AI, Krasnov KS, Shatalin YV, Penkov NV, Zhalimov VK, Molchanov MV, Palikova YA, Murashev AN, Maevsky EI, Fadeeva IS. Improving the stability and effectiveness of immunotropic squalene nanoemulsion by adding turpentine oil. Biomolecules. 2023;13(7):1053.
Sobot D, Mura S, Yesylevskyy SO, Dalbin L, Cayre F, Bort G, Mougin J, Desmaele D, Lepetre-Mouelhi S, Pieters G, Andreiuk B, Klymchenko AS, Paul J-L, Ramseyer C, Couvreur P. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nat Commun. 2017;8(1):15678.
Zhang L, Lu Y, Xiang M, Shang Q, Gao X. The retardant effect of 2-Tridecanone, mediated by cytochrome P450, on the development of cotton bollworm, Helicoverpa armigera. BMC Genomics. 2016;17(1):954.
Falodun A, Siraj R, Choudhary M. GC-MS analysis of insecticidal leaf essential oil of Pyrenacantha staudtii Hutch and Dalz (Icacinaceae). Trop J Pharm Res. 2009;8(2):139–43.
Chatzivasileiadis EA, Boon JJ, Sabelis MW. Accumulation and turnover of 2-tridecanone in Tetranychus urticae and its consequences for resistance of wild and cultivated tomatoes. Exp Appl Acarol. 1999;23(12):1011–21.
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakes H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiq F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2-tridecanone, CAS Registry Number 593-08-8. Food Chem Toxicol. 2022;169:113408.
Okoro BC, Dokunmu TM, Okafor E, Sokoya IA, Israel EN, Olusegun DO, Bella-Omunagbe M, Ebubechi UM, Ugbogu EA, Iweala EEJ. The ethnobotanical, bioactive compounds, pharmacological activities and toxicological evaluation of garlic (Allium sativum): A review. Pharmacol Res - Modern Chinese Med. 2023;8:100273.
Kareem A, Nami SAA, Khan MS, Bhat SA, Mirza AU, Laxmi L, Nishat N. Self-assembled transition metal dithiocarbamates of pyridine-3-carboxamide: synthesis, spectral characterisation, thermal and biological studies. New J Chem. 2019;43(11):4413–24.
Odutayo OE, Omonigbehin EA, Olawole TD, Ogunlana OO, Afolabi IS. Fermentation enhanced biotransformation of compounds in the kernel of Chrysophyllum albidum. Molecules. 2020;25(24):6021.
Paranthaman R, Praveen KP, Kumaravel S. GC-MS analysis of phytochemicals and simultaneous determination of flavonoids in Amaranthus caudatus (Sirukeerai) by RP-HPLC. J Anal Bioanal Tech. 2012;03(05):147.
Kawazu K, Adati T, Tatsuki S. Effects of photoregime on the timing of male responses to sex pheromones in male Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Appl Entomol Zool. 2003;38(3):327–31.
Kohara K, Kadomoto R, Kozuka H, Sakamoto K, Hayata Y. Deodorizing effect of Coriander on the offensive odor of the Porcine large Intestine. Food Sci Technol Res. 2006;12(1):38–42.
Bhardwaj R. GC-MS analysis and antimicrobial activity of alkaloids of Tecomella undulata. J Med Plant Stud. 2018; 6(6):68–72.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tropical Journal of Natural Product Research (TJNPR)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.