UHPLC-HRMS-Based Metabolomics To Evaluate the Antibacterial Compounds of <i>Coix lacryma-jobi</i> Seeds With Different Extraction Solvent Concentrations
DOI:
https://doi.org/10.26538/tjnpr/v8i8.24Keywords:
Extraction solvent concentration, Metabolomics, Antibacterial, Coix lacryma-Jobi L.Abstract
Coix lacryma-Jobi L., commonly known as hanjeli, has traditional medicinal properties and potential antibacterial efficacy. The antibacterial potential of hanjeli seeds is attributed to their inherent metabolites. The composition and concentration of these metabolites in hanjeli seed extracts vary depending on the concentration of the extraction solvent used. Thus, selecting the optimal extraction solvent is crucial. This study employed a metabolomics approach using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) to assess variations in metabolite profiles and antibacterial activities of hanjeli seeds under different extraction solvent concentrations (25%, 50%, and 75% ethanol). Extraction was conducted using the maceration method for 2 × 24 hours. In addition, metabolite profiles were analyzed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) to distinguish the samples and correlate them with their antibacterial activity against Escherichia coli (E. coli). A total of 22 metabolites were putatively identified using UHPLC-HRMS. PCA effectively distinguished extracts based on extraction solvent concentration, whereas the HCA heatmap demonstrated variations in metabolite composition among the samples. The antibacterial activity of hanjeli seeds ranged from 33.16 ± 0.00% to 40.03 ± 2.14%. These findings indicate a significant influence of the extraction solvent concentration on the metabolite profile and antibacterial activity of hanjeli seeds.
References
Corke H, Huang Y, Li JS. Coix: Overview. Encyclopedia of Food Grains: Second Edition, vol. 1–4, 2015; p. 184–9. doi:10.1016/B978-0-12-394437-5.00008-5.
Hu X, Xu F, Li J, Li J, Mo C, Zhao M, Wang L. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem. 2022; 374:131636. doi: 10.1016/j.foodchem.2021.
Yu Q, Ye G, Lei Z, Yang R, Chen R, He T, Huang S. An isolated compound from stems and leaves of Coix lacryma-jobi L. and its anticancer effect. Food Biosci. 2021;42:101047. doi:10.1016/j.fbio.2021.101047.
Patel B, Patel G, Shah S, Parmar S. A review: Coix lacrym-jobi L. Research Journal of Pharmacognosy and Phytochemistry. 2017;9:248–52. doi:10.5958/0975-4385.2017.00046.2.
Amen Y, Arung ET, Afifi MS, Halim AF, Ashour A, Fujimoto R, Goto T, Shimizu K. Melanogenesis inhibitors from Coix lacryma-jobi seeds in B16-F10 melanoma cells. Nat Prod Res. 2017;31(23):2712-2718. doi: 10.1080/14786419.2017.
Andriana Y, Fajriani NA, Iwansyah AC, Xuan TD. Phytochemical constituents of Indonesian adlay (Coix lacrima-jobi L.) and their potential as antioxidants and crop protection agents. Agrochemicals. 2023;2:135–49. doi:10.3390/agrochemicals2010010.
Zhao D, Yan M, Xu H, Liang H, Zhang J, Li M, Wang C. Antioxidant and antiaging activity of fermented coix seed polysaccharides on Caenorhabditis elegans. Nutrients. 2023; 15(11):2474. doi: 10.3390/nu15112474.
Breitenbach GL, Rosenberger MG, Rosenberger AG, Caetano J, Pellá MCG, Scheidt DT, Martins CVB, Munizc EC, Dragunski DC. Antimicrobial activity of polymeric microfibers containing Coix Lacryma-jobi extract. Macromol Res. 2020; 28:869–76. doi:10.1007/s13233-020-8115-z.
He W, Yin M, Yang R, Zhao W. Optimization of adlay (Coix lacryma-jobi) bran oil extraction: Variability in fatty acids profile and fatty acid synthase inhibitory activities. Biocatal Agric Biotechnol. 2020;28:101740. doi:10.1016/j.bcab.2020.101740.
Qu D, Liu M, Huang M, Wang L, Chen Y, Liu C, Liu Y. Octanoyl galactose ester-modified microemulsion system self-assembled by coix seed components to enhance tumor targeting and hepatoma therapy. Int J Nanomedicine. 2017;12:2045-2059. doi: 10.2147/IJN.S125293.
Manosroi A, Sainakham M, Chankhampan C, Abe M, Manosroi W, Manosroi J. Potent in vitro anti-proliferative, apoptotic and anti-oxidative activities of semi-purified Job’s tears (Coix lachryma-jobi Linn.) extracts from different preparation methods on 5 human cancer cell lines. J Ethnopharmacol. 2016;187:281–92. Doi:10.1016/j.jep.2016.04.037.
Ruan JJ, Weng WF, Yan J, Zhou YX, Chen H, Ren MJ, Cheng JP. Coix lacryma-jobi chymotrypsin inhibitor displays antifungal activity. Pestic Biochem Physiol. 2019;160:49-57. doi: 10.1016/j.pestbp.2019.06.016.
Sui Y, Xu D, Sun X. Identification of anti-hyperuricemic components from Coix seed. Food Biosci. 2023;52:102461. doi:10.1016/j.fbio.2023.102461.
Zhu F. Coix: Chemical composition and health effects. Trends Food Sci Technol. 2017;61:160–75. doi:10.1016/j.tifs.2016.12.003.
Diningrat DS, Risfandi M, Harahap NS, Sari AN, Kusdianti, Siregar HK. Phytochemical screening and antibacterial activity Coix lacryma-jobi oil. J Plant Biotechnol. 2020;47:100–6. doi:10.5010/JPB.2020.47.1.100.
Devaraj RD, Jeepipalli SPK, Xu B. Phytochemistry and health promoting effects of Job’s tears (Coix lacryma-jobi) - A critical review. Food Biosci. 2020;34:100537. doi:10.1016/j.fbio.2020.100537.
Seukep AJ, Mbuntcha HG, Zeuko’o EM, Woquan LS, Nembu NE, Bomba FT, Watching D, Kuete V. Established antibacterial drugs from plants. In: KUETE V, (Eds). Advances in botanical research. Amsterdam:Elsevier; 2023. 81–149 p. doi:10.1016/bs.abr.2022.08.005.
Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021;82:101093. doi: 10.1016/j.plipres.2021.101093
Llorent-Martínez EJ, Zengin G, Sinan KI, Polat R, Canlı D, Picot-Allain MCN, Mahomoodally MF. Impact of different extraction solvents and techniques on the biological activities of Cirsium yildizianum (Asteraceae: Cynareae). Ind Crops Prod. 2020;144:112033. doi:10.1016/j.indcrop.2019.112033.
Perumal V, Khatib A, Uddin Ahmed Q, Fathamah Uzir B, Abas F, Murugesu S, Zuwairi Saiman M, Primaharinastiti R, El-Seedi H. Antioxidants profile of Momordica charantia fruit extract analyzed using LC-MS-QTOF-based metabolomics. Food Chem. 2021;2:100012. doi: 10.1016/j.fochms.2021.100012.
Dadwal V, Joshi R, Gupta M. Comparative metabolomics of Himalayan crab apple (Malus baccata) with commercially utilized apple (Malus domestica) using UHPLC-QTOF-IMS coupled with multivariate analysis. Food Chem. 2023;402:134529. doi:10.1016/j.foodchem.2022.134529.
Liu J, Zhao H, Yin Z, Dong H, Chu X, Meng X, Li Y, Ding X. Application and prospect of metabolomics-related technologies in food inspection. Food Res Int. 2023;171:113071. doi: 10.1016/j.foodres.2023.113071.
Guo N, Chen Y, Yang X, Yan H, Fan B, Quan J, Wang M, Yang H. Urinary metabolomic profiling reveals difference between two traditional Chinese medicine subtypes of coronary heart disease. J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Aug 1;1179:122808. doi: 10.1016/j.jchromb.2021.
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol Plant. 2023;16:43–63. doi:10.1016/j.molp.2022.09.007.
Klau ME, Rohaeti E, Rafi M, Artika IM, Ambarsari L, Nurcholis W. Metabolite Profiling of Curcuma zanthorrhiza varieties grown in different regions using UHPLC-Q-Orbitrap-HRMS and chemometrics analysis. Biointerface Res Appl Chem. 2023;13:26. doi:10.33263/BRIAC131.026.
Nurcholis W, Khumaida N, Bintang M, Syukur M. GC-MS analysis of rhizome ethanol extracts from Curcuma aeruginosa accessions and their efficiency activities as anticancer agent. Biodiversitas. 2021;22:1179–86. doi:10.13057/biodiv/d220313.
Paul A, de Boves Harrington P. Chemometric applications in metabolomic studies using chromatography-mass spectrometry. TrAC, Trends Anal Chem. 2021;135:116165. doi:10.1016/j.trac.2020.116165.
Demarque DP, Dusi RG, de Sousa FDM, Grossi SM, Silvério MRS, Lopes NP, Espindola LS. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep. 2020;10(1):1051. doi: 10.1038/s41598-020-58046-y.
Sumarlin LO, Heryanto R, Riansyah F, Wulandari M, Audah KA, Irsyad KS. Screening of antibacterial compounds against Escherichia coli from hanjeli seeds (Coix lacryma-jobi) based on metabolomics. Trop J Nat Prod Res. 2023;7:2867–72. doi:10.26538/tjnpr/v7i5.4.
Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted metabolomics strategies—challenges and emerging directions. J Am Soc Mass Spectrom. 2016;27:1897–905. doi:10.1007/s13361-016-1469-y.
Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;13:1–26. doi:10.1186/s13020-018-0177-x.
Ma E, An Y, Zhang G, Zhao M, Iqbal MW, Zabed HM, Qi X. Enhancing the antibacterial activity of Lactobacillus reuteri against Escherichia coli by random mutagenesis and delineating its mechanism. Food Biosci. 2023;51:102209. doi:10.1016/j.fbio.2022.102209.
Dubreuil JD. Fruit extracts to control pathogenic Escherichia coli: A sweet solution. Heliyon. 2020;6:e03410. doi:10.1016/j.heliyon.2020.e03410.
Mandal SM, Chakraborty D. Mass spectrometric detection of phenolic acids. natural products, berlin, heidelberg: Springer Berlin Heidelberg; 2013, p. 2047–59. doi:10.1007/978-3-642-22144-6_90.
Lin L, Yang Q, Zhao K, Zhao M. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase. Food Chem. 2018;253:108–18. doi:10.1016/j.foodchem.2018.01.139.
Wang L, Chen C, Su A, Zhang Y, Yuan J, Ju X. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal. Food Chem. 2016;196:509–17. doi:10.1016/j.foodchem.2015.09.083.
Yin H-M, Wang S-N, Nie S-P, Xie M-Y. Coix polysaccharides: Gut microbiota regulation and immunomodulatory. Bioact Carbohydr Diet Fibre. 2018;16:53–61. doi:10.1016/j.bcdf.2018.04.002.
Xi XJ, Zhu YG, Tong YP, Yang XL, Tang NN, Ma SM, Li S, Cheng Z. Assessment of the genetic diversity of different job's tears (Coix lacryma-jobi L.) accessions and the active composition and anticancer effect of its seed oil. PLoS One. 2016;11(4):e0153269. doi: 10.1371/journal.pone.0153269.
Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31. doi:10.1039/C3AY41907J.
Benton PH, Ivanisevic J, Rinehart D, Epstein A, Kurczy ME, Boska MD, Gendelman HE, Siuzdak G. An interactive cluster heat map to visualize and explore multidimensional metabolomic data. Metabolomics. 2015;11(4):1029-1034. doi: 10.1007/s11306-014-0759-2.
Nieto-Peñalver CG, Savino MJ, Bertini E V., Sánchez LA, de Figueroa LIC. Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties. Res Microbiol. 2014;165:549–58. doi:10.1016/j.resmic.2014.06.003.
Masoura M, Passaretti P, Overton TW, Lund PA, Gkatzionis K. Use of a model to understand the synergies underlying the antibacterial mechanism of H2O2-producing honeys. Sci Rep. 2020;10:17692. doi:10.1038/s41598-020-74937-6.
Ji QY, Wang W, Yan H, Qu H, Liu Y, Qian Y, Gu R. The effect of different organic acids and their combination on the cell barrier and biofilm of Escherichia coli. Foods. 2023;12(16):3011. doi: 10.3390/foods12163011.
Burel C, Kala A, Purevdorj‐Gage L. Impact of pH on citric acid antimicrobial activity against Gram‐negative bacteria. Lett Appl Microbiol. 2021;72:332–40. doi:10.1111/lam.13420.
Kang J-W, Lee H-Y, Kang D-H. Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157:H7 biofilm formed on stainless steel. Food Microbiol. 2021;95:103676. doi:10.1016/j.fm.2020.103676.
Lou Z, Wang H, Rao S, Sun J, Ma C, Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012;25:550–4. doi:10.1016/j.foodcont.2011.11.022.
Khatkar A, Nanda A, Kumar P, Narasimhan B. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arab J Chem. 2017;10:S3804–15. doi:10.1016/j.arabjc.2014.05.018.
Andrade M, Benfeito S, Soares P, Magalhães e Silva D, Loureiro J, Borges A, Simões M. Fine-tuning of the hydrophobicity of caffeic acid: studies on the antimicrobial activity against Staphylococcus aureus and Escherichia coli. RSC Adv. 2015;5:53915–25. doi:10.1039/C5RA05840F.
Khan F, Bamunuarachchi NI, Tabassum N, Kim Y-M. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J Agric Food Chem. 2021;69:2979–3004. doi:10.1021/acs.jafc.0c07579.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tropical Journal of Natural Product Research (TJNPR)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.