Antibacterial Activity of Silver Nanoparticles Synthesized Using Vitex grandifolia Against Multidrug-Resistant (MDR) Pathogens

Main Article Content

Kehinde O. Fagbemi
Oluwakemi A Thonda
Olarewaju O. Daramola
Temitope Oyewole
Oladapo O. Adeduro
Amodu Samuel
Daniel Popoola
Daniel A. Aina

Abstract

Amid escalating antibiotic resistance, the urgency to combat multidrug-resistant (MDR) pathogens calls for innovative solutions. This study explores the potential of silver nanoparticles (AgNPs) synthesized from Vitex grandifolia leaves, chosen due to its affordability, accessibility, and therapeutic efficacy. The synthesis involves blending leaf extract with water and silver nitrate (AgNO3). Sunlight exposure led to the biological reduction of AgNO3, resulting in the formation of AgNPs characterized by a distinctive brown hue. These synthesized AgNPs underwent comprehensive characterization using various techniques including ultraviolet-visible spectroscopy (UV Vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Antibacterial evaluation against multidrug-resistant (MDR) pathogens was conducted using the agar well diffusion method. Characterization studies confirmed the successful synthesis of AgNPs, with UV-visible spectroscopy revealing an absorbance peak at 350 nm. SEM analysis indicated an average particle size of approximately 13.12 nm, predominantly in rod-like shapes. EDX analysis corroborated the presence of silver, oxygen, and carbon, while XRD analysis unveiled a face-centred cubic crystalline structure. FTIR analysis identified various functional groups attributed to phytochemicals in the plant extract, acting as capping and reducing agents. Notably, the AgNPs exhibited a considerable band gap value (3.09 eV). For the antibacterial activity, AgNPs demonstrated significant efficacy against several multidrug-resistant pathogens, exhibiting a zone of inhibition of 15 mm. In summary, this study presents a rapid green synthesis method for AgNPs utilizing Vitex grandifolia leaves. The characterized AgNPs show promise in combating MDR pathogens, offering a sustainable and cost-effective solution in nanotechnology.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fagbemi, K. O., Thonda, O. A., Daramola, O. O., Oyewole, T., Adeduro, O. O., Samuel, A., Popoola, D., & Aina, D. A. (2024). Antibacterial Activity of Silver Nanoparticles Synthesized Using Vitex grandifolia Against Multidrug-Resistant (MDR) Pathogens. Tropical Journal of Natural Product Research (TJNPR), 8(8), 8068-8074. https://doi.org/10.26538/tjnpr/v8i8.21
Section
Articles

References

Akintelu SA, Bo Y, Folorunso AS. A review on synthesis, optimisation, mechanism, characterisation, and antibacterial application of silver nanoparticles synthesised from plants. J. Chem. 2020; 1-12. doi:10.1155/2020/3189043

Diem PN, Phuong TN, Hien NQ, Quang DT, Hoa TT, Cuong ND. Silver, gold, and silver-gold bimetallic nanoparticle-decorated dextran: facile synthesis and versatile tunability on the antimicrobial activity. J. Nanomater. 2020; 1-11. doi:10.1155/2020/7195048

Kousar F, Khanem A, Ullah I, Younas F. Phytochemical analysis and synergistic antimicrobial potential of extracts from Carica papaya and Beta vulgaris. Kuwait J Sci. 2023; 50(3); 307-312. doi:10.1016/j.kjs.2023.05.010

Husain S, Nandi A, Simnani FZ, Saha U, Ghosh A, Sinha A, Sahay A, Samal SK, Panda PK, Verma SK. Emerging trends in advanced translational applications of silver nanoparticles: a progressing dawn of nanotechnology. J. Funct. Biomater. 2023; 14(1): 1-29. doi:10.3390/jfb14010047

Gunell M, Haapanen J, Brobbey KJ, Saarinen JJ, Toivakka M, Mäkelä JM, Huovinen P, Eerola E. Antimicrobial characterisation of silver nanoparticle-coated surfaces by "touch test" method. Nano. Sci. Appl. 2017; 137-145. doi:10.2147/nsa.s139505

Jemal K, Sandeep BV, Pola S. Synthesis, characterisation, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf-derived callus extracts mediated silver nanoparticles. J. Nano. 2017; 1-11. doi:10.1155/2017/4213275

Ahmad B, Chang L, Satti UQ, Arshad H, Mustafa G, Shaukat U, Wang F, Tong C. Phyto-synthesis, characterization, and in vitro antibacterial activity of silver nanoparticles using various plant extracts. Bioeng. 2022; 9(12):779. doi:10.3390/bioengineering9120779

Bindhu MR, Umadevi M, Esmail GA, Al-Dhabi NA, Arasu MV. Green synthesis and characterisation of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem Photobio B. 2020; 205:111836. doi:10.1016/j.jphotobiol.2020.111836

Jini D, Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mat. Today: Proc; 22:432-438. doi:10.1016/j.matpr.2019.07.672

Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N, Mishig-Ochir T. Antibacterial activity and characteristics of silver nanoparticles biosynthesised from Carduus crispus. Sci. Rep. 2021;11(1):1-12. doi:10.1038/s41598-021-00520-2

Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, Giglioli-Guivarc'h N, Hano C, Abbasi BH. Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mat. Sci. Eng. C. 2020; 112:1-14. doi:10.1016/j.msec.2020.110889

Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Col. Surf B: Biointerfaces: 2010; 79(2):488-493. doi:10.1016/j.colsurfb.2010.05.018

Fagbemi KO, Olajuyigbe OO, Coopoosamy R. Biogenic synthesis, characterisation, antibacterial and antioxidant activities of silver nanoparticles mediated from Tamarindus indica Linn fruit pulp extract. J. Herbmed Pharmacol. 2023; 12(4):459-468. doi: 10.34172/jhp.2023.43430

Rautela A, Rani J. Green synthesis of silver nanoparticles from Tectona grandis seeds extract characterisation and mechanism of antimicrobial action on different microorganisms. J Anal Sci Tech. 2019; 10(5):1-10. doi:10.1186/s40543-018-0163-z

Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J. Biol. Sci. 2021; 28(7):3633-3640. doi:10.1016/j.sjbs.2021.05.007

Bello MO, Zaki AA, Aloko S, Fasinu PS, Bello EO, Ajao UL, Oguntoye OS. The genus Vitex: an overview of iridoids as a chemotaxonomic marker. Beni-Suef Uni. J. Basic and Appl Sci. 2018; 7(4):414-419. doi:10.1016/j.bjbas.2017.07.004

Amo-Mensah J, Darko G, Borquaye LS. Anti-inflammatory and antioxidant activities of the root and bark extracts of Vitex grandifolia (Verbanaceae). Sci. Afr. 2020; 10:1-9. doi:10.1016/j.sciaf.2020.e00586

Sharifah Raina M, Hassan M. Screening of phytochemical properties and antimicrobial activity of Malaysian medicinal plants against aquatic bacteria. Malays. J. Micro. 2016; 12(4): 284-290.

Oluwasesan MB, Saulawa AI, Ogbesejana AB. Insight in the phytochemistry of wild vegetable Vitex grandifolia Gürke with its Biological and nutritional importance: A Review. Disco. Phytomed. 2021; 8(3): 117-124. doi:10.15562/phytomedicine.2021.170

Epidi TE, Odili EO. Biocidal activity of selected plant powders against Tribolium castaneum Herbst in stored groundnut (Arachis hypogaea L.). Afr. J. Environ. Sci. Tech. 2009; 3(1):1-5. doi:10.5897/ajest08.030

Aina DA, Fagbemi KO. In vitro antioxidant activities and quantitative chemical composition of alcohol-based extracts of fruit pulp: A comparative study of Adansonia digitata. Adv. Pharm. J. 2022; 7(1):1-15. doi:10.31024/apj.2022.7.1.1

Mohanta YK, Panda SK, Syed A, Ameen F, Bastia AK, Mohanta TK. Bio‐inspired synthesis of silver nanoparticles from leaf extracts of Cleistanthus collinus (Roxb.): Its potential antibacterial and anticancer activities. IET Nanobiotechnol. 2018; 12(3):343-348. doi:10.1049/iet-nbt.2017.0203

Das AJ, Kumar R, Goutam SP, Sagar SS. Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity. J. Bioeng. Biomed. Sci. 2016; 6(5):1-5. doi:10.4172/2155-9538.1000208

Mollick MM, Bhowmick B, Maity D, Mondal D, Bain MK, Bankura K, Sarkar J, Rana D, Acharya K, Chattopadhyay D. Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int. J. Green Nano. 2012; 4(3):230-239. doi:10.1080/19430892.2012.706103

Hawar SN, Al-Shmgani HS, Al-Kubaisi ZA, Sulaiman GM, Dewir YH, Rikisahedew JJ. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. J. Nanomat. 2022; 1-8. doi:10.1155/2022/1058119

Omeche NB, Ezeala IC, Ikem CJ, Uzor PF. Green synthesis of silver nanoparticles using Cola nitida nut extract (vent.) Schott & Endl. (Malvaceae), characterization and the determination of their antimicrobial activity. Trop. J. Nat. Prod. Res. 2022; 6(1):156-160. doi:10.26538/tjnpr/v6i1.25

Fagbemi KO, Aina DA, Adeoye-Isijola MO, Naidoo KK, Coopoosamy RM, Olajuyigbe OO. Bioactive compounds, antibacterial and antioxidant activities of methanol extract of Tamarindus indica Linn. Sci. Rep. 2022; 12(1):9432.

Bao L, Peng R, Ren X, Ma R, Li J, Wang Y. Analysis of some common pathogens and their drug resistance to antibiotics. Pak. J. Med. Sci. 2013; 29(1):135-139. doi:10.12669/pjms.291.2744

Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens. 2021; 10(10):1310. doi:10.3390/pathogens10101310

Meikle TG, Dyett BP, Strachan JB, White J, Drummond CJ, Conn CE. Preparation, characterisation, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl. Mat. Interfaces. 2020; 12(6):6944-6954 doi:10.1021/acsami.9b21783

Arvand M, Hoeck M, Hahn H, Wagner J. Antimicrobial resistance in Streptococcus pyogenes isolates in Berlin. J. Antimicrob. Chemo. 2000; 46(4):621-624. doi:10.1093/jac/46.4.621

Kebede D, Admas A, Mekonnen D. Prevalence and antibiotics susceptibility profiles of Streptococcus pyogenes among pediatric patients with acute pharyngitis at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Micro. 2021; 21:1-10. doi:10.1186/s12866-021-02196-0

Nagao PE, Burkovski A, Mattos-Guaraldi AL. Streptococcus spp. and Corynebacterium spp.: Clinical and zoonotic epidemiology, virulence potential, antimicrobial resistance, and genomic trends and approaches. Front. Micro. 2022; 13:1-3. doi:10.3389/fmicb.2022.867210

Ferretti JJ, Stevens DL, Fischetti VA. Streptococcus pyogenes: Basic biology to clinical manifestations. Uni. OKH Health Sci Center.

Salomoni R, Léo P, Montemor AF, Rinaldi BG, Rodrigues MF. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotech. Sci. Appl. 2017; 10: 115-121. doi:10.2147/nsa.s133415

Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multidrug resistant clinical isolates of Pseudomonas aeruginosa. J. Nanobiotech. 2014; 12(40):1-9. doi:10.1186/s12951-014-0040-x

Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MR, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability. 2018; 10(4):913. doi:10.3390/su10040913

Ahmad SA, Das SS, Khatoon A, Ansari MT, Afzal M, Hasnain MS, Nayak AK. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol.. 2020; 3:756-69. doi:10.1016/j.mset.2020.09.002

Oluranti O, Rotimi L, Gideon A, Oluwatayo A, Olusola M, Adedosu T. Biogenic silver nanoparticles from two species of Malvaceae: Synthesis, antimalarial, antitrypanosomal, antimicrobial properties and their potential towards HeLa cell line. Trop. J. Nat. Prod. Res. 2023; 7(3). 2642-2649. doi:10.26538/tjnpr/v7i3.26

Burić P, Čarapar I, Pavičić-Hamer D, Kovačić I, Jurković L, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Lyons DM. Particle size modulates silver nanoparticle toxicity during embryogenesis of urchins Arbacia lixula and Paracentrotus lividus. Int. J. Mol. Sci. 2023; 24(1):1-21. doi:10.3390/ijms24010745

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020; 15: 2555-2262. doi:10.2147/ijn.s246764.

Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesised silver nanoparticles against the MCF-7 tumour cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018; (13):8013-8024. doi:10.2147/ijn.s189295

Durán N, Nakazato G, Seabra AB. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl. Micro. Biotech. 2016; 100:6555-6570. doi:10.1007/s00253-016-7657-7