Impact of Maturity Stage on Free Radical Scavenging and Antidiabetic Activities of Melinjo (Gnetum gnemon L.) Seed Proteins
Main Article Content
Abstract
Seed storage proteins are a major protein source due to their readily available bioactive peptides. Melinjo (Gnetum gnemon L) seeds have a promising potential for massive production in Indonesia because of their high protein content. The composition and protein content of these seeds depends on their stage of maturity. This study investigated the effect of melinjo seed proteins at green (GG), yellow (YG), and red (RG) stages of maturity on their antioxidant and antidiabetic activities. Also, this study aimed to determine seed maturity's impact and identify the seeds most active stage on free radical scavenging (antioxidant) and antidiabetic activity. This study analyzed the amino acid composition, protein profiles, free radical scavenging, and in vitro antidiabetic activities of GG, YG, and RG seed proteins. The concentration of amino acids in melinjo seed samples was 0.36-9.69 g/100 g protein, with the total amino acid content in GG seeds (59.92 g/100 g protein) being significantly higher than in YG (53.91 g/100 g protein) or RG (52.79 g/100 g protein) seeds. The protein from GG seeds also exhibited significantly (p<0.05) higher free radical scavenging and in vitro antidiabetic activities than YG or RG seeds. The free radical scavenging activities were measured using ABTS, hydroxyl radical, and superoxide radical assays. The antidiabetic activity was assessed based on α-amylase and α-glucosidase inhibitory activities. The results indicated that the maturity stage of the seed proteins significantly affected (p<0.05) free radical scavenging and in vitro antidiabetic activities. GG seed protein showed high potential as an antioxidant and antidiabetic agent, suggesting its possible use in future nutraceuticals and human health applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Afroj AS, Mayur KK, Dipak RS, Ashish NT. Review on: Diabetes Mellitus is a Disease. Int. J. Pharm. Sci. Res. 2022; 13(1),102-109. Doi:10.26452/ijrps.v13i1.27
Tukiran T, Ahmad RS, Irene CC, Frisca NS. The Potency of Java Apple (Syzygium samarangense) AS α-Glucosidase and α-Amylase Inhibitor: An In-Silico Approach. Trop. J. Nat. Prod. Res. 2023;7(8):3741-3755. Doi: 10.26538/tjnpr/v7i8.26
Ouassou H, Zahidi T, Bouknana S, Bouhrim M, Mekhfi H, Ziyyat A, Legssyer, abdekhaleq, Aziz, M, Bnouham, M. Inhibition of α-glucosidase, intestinal glucose absorption, and antidiabetic properties by Caralluma europaea. J. Evid Based Complementary Altern. Med. 2018;9589472. Doi: 10.1155/2018/9589472
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev. 2022;21,1049–1079. Doi: 10.1007/s11101-021-09773-1
Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res. 2020; 2020: 7489795. Doi: 10.1155/2020/7489795
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev, 2017;2017: 8416763. Doi: 10.1155/2017/8416763
Sirirat L, Sarinrat J, Kanyatorn Y, Puthep W, Thanyaluck S, Sirikhwan M. Evaluation of In Vitro Antioxidant Activities and Toxicity Effects of a Novel Plant-Based Body Lotion from Thai Medicinal Plants. Trop. J. Nat. Prod. Res. 2024;8(2)6197-6203. Doi: 10.26538/tjnpr/v8i2.16
Zou TB, He TP, Li HB, Tang HW, Xia EQ. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules. 2016;21(1):72. Doi: 10.3390/molecules21010072
Gupta P, Jyoti R, Gupta S. Free radical pharmacology and its role in various diseases. J. Drug Deliv. Ther., 2019;9(2-s),690-694. Doi: 10.22270/jddt.v9i2-s.2593
Martemucci G, Costagliola C, Mariano M, D’andrea L, Napolitano P, D’Alessandro AG. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022 ;2(2):48–78. Doi: 10.3390/oxygen2020006
Najafian L. A review of bioactive peptides as functional food ingredients: mechanisms of action and their applications in active packaging and food quality improvement. Food Funct. 2023;14(13):5835-5857. Doi: 10.1039/d3fo00362k
Silalahi M. Gnetum gnemon L. Gnetaceae. Ethnobotany of the mountain regions of southeast asia. 2020:1-7. http://repository.uki.ac.id/6501/1/GnetumGnemon.pdf (accessed December 20, 2022).
Bhat R, binti Yahya N. Evaluating belinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chem. 2014;156:42–9. Doi: 10.1016/j.foodchem.2014.01.063
Siswoyo TA, Mardiana E, Lee KO, Hoshokawa K. Isolation and characterization of antioxidant protein fractions from melinjo (Gnetum gnemon) seeds. J. Agric. Siswoyo TA, Ardyati T, Hosokawa K. Fermentation-induced changes in antioxidant activities and oxidative DNA damage protection of melinjo (Gnetum gnemon) flour. J. Food Biochem. 2017;41(4):e12382. Doi: 10.1111/jfbc.12382
Cattaneo C, Givonetti A, Cavaletto M. Protein mass fingerprinting and antioxidant power of hemp seeds in relation to plant cultivar and environment. Plants (Basel). 2023;12(4):782. Doi: 10.3390/plants12040782
Intiquilla A, Jiménez-Aliaga K, Zavaleta AI, Arnao I, Peña C, Chavez-Hidalgo EL, et al. Erythrina edulis (Pajuro) seed protein: A new source of antioxidant peptides. Nat. Prod. Commun. 2016;11(6):1934578X1601100. Doi: 10.1177/1934578x1601100620
Idowu AO, Famuwagun AA, Fagbemi T N, Aluko RE. Antioxidant and enzyme-inhibitory properties of sesame seed protein fractions and their isolate and hydrolyzate. Int. J. Food Prop. 2021;24(1):780–95. Doi: 10.1080/10942912.2021.1919704
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1–2):248–54. Doi: 10.1006/abio.1976.9999
Bhat R, Sridhar KR, Young C, Bhagwath AA, Ganesh S. Composition and functional properties of raw and electron beam‐irradiated Mucuna pruriens seeds. IJFST. 2008;43(8):1338–51. Doi: 10.1111/j.1365-2621.2007.01617.x
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. Doi: 10.1038/227680a0
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol. Med. 1999;26(9–10):1231–7. Doi: 10.1016/s0891-5849(98)00315-3
Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987 ;165(1):215–9. Doi: 10.1016/0003-2697(87)90222-3
Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J. Agric. Food Chem. 2009;58(1):587–93. 10.1021/jf9028656
Awote OK, Adeyemo AG, Igbalaye JO, Awosemo RB, Ibrahim AB, Omolaja BE, Abdulrafiu F, Fajobi T. In vitro alpha-amylase inhibitory activity, antioxidant activity and HPLC analysis of Eichhornia crassipes (water hyacinth) Methanol Extracts. Trop J Nat Prod Res, 2021;
(12):2174-2181. Doi: 10.26538/tjnpr/v5i12.23
Miyazawa M, Yagi N, Taguchi K. Inhibitory compounds of alpha-glucosidase activity from Arctium lappa L. J. Oleo Sci. 2005;54(11):589–94. Doi: 10.5650/jos.54.589
Singh N, Jain P, Ujinwal M, Langyan S. Escalate protein plates from legumes for sustainable human nutrition. Front. Nutr. 2022;9:977986. Doi: 10.3389/fnut.2022.977986
Chikezie PC, Ibegbulem CO, Monago OS, Mbagwu FN, Nwachukwu CU. Amino acid profiles, total nitrogen contents, and computed-protein efficiency ratios of Manihot esculenta Root and Dioscorea rotundata Tuber Peels. Journal of Food Processing. 2016;2016:1–8. Doi: 10.1155/2016/1697458
Xu N, Chen G, Liu H. Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules. 2017;22(12):2066. Doi: 10.3390/molecules22122066
Pownall TL, Udenigwe CC, Aluko RE. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) Enzymatic protein hydrolysate fractions. J. Agric. Food Chem. 2010;58(8):4712–8. Doi: 10.1021/jf904456r
Masoud A, Al-Ghazali M, Al-Futini F, Al-Mansori A, Al-Subahi A, Farhan A, Al-Sharafi M, Al-absi R, Al-Matari S. Antioxidant effect of frankincense extract in the brain cortex of diabetic rats. J. Assoc. Arab Univ. Basic Appl. Sci. 2017;24(1):95–100. Doi: 10.1016/j.jaubas.2016.10.003
Shori AB. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015;13(5):297–305. Doi: 10.1016/s2095-4964(15)60193-5
Sochor J, Jurikova T, Pohanka M, Skutkova H, Baron M, Tomaskova L, Balla S, Klejdus B, Pokluda R, Mlcek J, Trojakova Z, Saloun J. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis. Molecules. 2014;19(5):6504–23. Doi: 10.3390/molecules19056504
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39(1):44–84. Doi: 10.1016/j.biocel.2006.07.001
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev., 2017, 2017:8416763. Doi: 10.1155/2017/8416763
Yu Z, Yin Y, Zhao W, Liu J, Chen F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem. 2012;135(3):2078–85. Doi: 10.1016/j.foodchem.2012.06.088
Zhou H, Safdar B, Li H, Yang L, Ying Z, Liu X. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem. 2023;403, 134434. Doi: 10.1016/j.foodchem.2022.134434
Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem. 2012;60(36):8924-9. Doi: 10.1021/jf301147n38.