Therapeutic Effects of Dipterocarpus alatus Roxb. Ex G. Don Ointment on Methicillinresistant Staphylococcus aureus -Infected Skin Abrasion Wounds in Mice
Main Article Content
Abstract
Skin abrasion wounds, especially those infected with methicillin-resistant Staphylococcus aureus (MRSA), pose a risk of developing into severe lesions. MRSA is resistant to typical antibiotics, which necessitate intravenous antibiotic and/or surgical interventions. A Yang-Na (Dipterocarpus alatus Roxb. Ex G. Don) twig extract has been shown to exhibit antibacterial and wound healing properties in mice with MRSA-infected wounds. This study aimed to examine the efficacy of an ointment containing Yang-Na twig extract against MRSA-infected abrasion wounds in mice. Skin abrasion wounds induced on mice were infected with MRSA (n=10) and left untreated or treated daily with an ointment base, tetracycline ointment (160 μg/g), or Yang-Na twig ointments (20 and 40 mg/g) for 9 days, alongside a non-infected control group. MRSA infection significantly compromised skin integrity, as evidenced by weakened skin barrier strength and enhanced transepidermal water loss. The infected wounds showed signs of deterioration and substantial numbers of MRSA colonies, along with mast cell infiltration and increased mRNA expression of inflammatory-related genes (TLR-2, NF-kB, TNF-a, IL-1β, IL-6, and IL-10). Treatment with Yang-Na twig ointments restored skin integrity and improved wound appearance within a week. Mast cell infiltration and expression of inflammatory-related genes were normalized and no MRSA colonies were observed in the wounds treated with Yang-Na twig ointments. The other treatments did not achieve the same results. These findings highlight the therapeutic effects of the Yang-Na twig ointment as an antibacterial and wound healing remedy with anti-inflammatory properties.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Flohr C, Hay R. Putting the burden of skin diseases on the global map. Br J Dermatol. 2021; 184(2): 189-190. doi: 10.1111/bjd.19704, PMID: 33544440.
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020; 10: 107. eCollection 2020. doi: 10.3389/fcimb.2020.00107, PMID: 32257966.
DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated methicillin-resistant Staphylococcus aureus. Lancet. 2010; 375(9725): 1557-1568. doi: 10.1016/S0140-6736(09)61999-1, PMID: 20206987.
Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011; 11(8): 505-518. doi: 10.1038/nri3010, PMID: 21720387.
Stryjewski ME, Chambers HF. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008; 46(Suppl 5): S368-S377. doi: 10.1086/533593, PMID: 18462092.
Aslam MS, Ahmad MS, Mamat AS. A phytochemical, ethnomedicinal and pharmacological review of genus Dipterocarpus. Int J Pharm Pharm Sci. 2015; 7(4): 27-38. https://journals.innovareacademics.in/index.php/ijpps/article/view/4686
Karnick CR, Hocking GM. Ethnobotanical records of drug plants described in Valmiki Ramayana and their uses in the Ayurvedic system of medicine. Q J Crude Drug Res. 1975; 13(3-4): 143-154. Epub 2010 Jul 3. doi: 10.1080/13880207509162671.
Chandra PPR. Ecological analysis of Dipterocarpaceae of North Andaman Forest, India. J Plant Dev. 2011; 18: 135-149.
Yongram C, Sungthong B, Puthongking P, Weerapreeyakul N. Chemical composition, antioxidant and cytotoxicity activities of leaves, bark, twigs and oleo-resin of Dipterocarpus alatus. Molecules. 2019; 24(17): 3083. doi: 10.3390/molecules24173083, PMID: 31450678.
Chatuphonprasert W, Tatiya-aphiradee N, Thammawat S, Yongram C, Puthongking P, Jarukamjorn K. Antibacterial and wound healing activity of Dipterocarpus alatus crude extract against methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. J Skin Stem Cell. 2019; 6(1): e99579. doi: 10.5812/jssc.99579.
Chatuphonprasert W, Tatiya-Aphiradee N, Thammawat S, Sriset Y, Puthongking P, Sungthong B, et al. Antibacterial activity of Dipterocarpus alatus twig extract against methicillin-resistant Staphylococcus aureus (MRSA). Trop J Nat Prod Res. 2020; 4(9): 571-577. doi: 10.26538/tjnpr/v4i9.13.
Logger JGM, Driessen RJB, de Jong EMGJ, van Erp PEJ. Value of GPSkin for the measurement of skin barrier impairment and for monitoring of rosacea treatment in daily practice. Skin Res Technol. 2021; 27(1): 15-23. doi: 10.1111/srt.12900.
Tatiya-aphiradee N, Chatuphonprasert W, Jarukamjorn, K. Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant Staphylococcus aureus-induced superficial skin infection in mice. Biomed Pharmacother. 2019; 111 (2019): 705-713. doi: 10.1016/j.biopha.2018.12.142.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4): 402-408. doi: 10.1006/meth.2001.1262.
Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int J Inflam. 2019; 2019: 3706315. eCollection 2019. doi: 10.1155/2019/3706315, PMID: 31275545.
Shrestha R, Krishan K, Ishaq H, Kanchan T. Abrasion. Treasure Island (FL): StatPearls Publishing; 2024. StatPearls [Internet]. PMID: 32119352. Bookshelf ID: NBK554465. https://www.ncbi.nlm.nih.gov/books/NBK554465/
Czaika V, Alborova A, Richter H, Sterry W, Vergou T, Antoniou C, Lademann J, Koch, S. Comparison of transepidermal water loss and laser scanning microscopy measurements to assess their value in the characterization of cutaneous barrier defects. Skin Pharmacol Physiol. 2012; 25(1): 39-46. doi: 10.1159/000330486, PMID: 21968814.
Machado M, Salgado TM, Hadgraft J, Lane ME. The relationship between transepidermal water loss and skin permeability. Int. J Pharm. 2010; 384(1-2): 73-77. doi: 10.1016/j.ijpharm.2009.09.044, PMID: 19799976.
Chatuphonprasert W, Tatiya-aphiradee N, Sutthanut K, Thammawat S, Puthongking P, Nopwinyoowong N, Jarukamjorn, K. Combinatory effects of Dipterocarpus alatus twig emulgel: Wound-restoring, antibacterial, and anti-inflammatory activities against methicillin-resistant Staphylococcus aureus-infected mouse superficial wounds. Heliyon. 2023; 9(6): e17483. doi:
1016/j.heliyon.2023.e17483, PMID: 37416687.
Mojumdar HE, Madsen LB, Hansson H, Taavoniku I, Kristensen K, Persson C, Morén AK, Mokso R, Schmidtchen A, Ruzgas T, Engblom J. Probing skin barrier recovery on molecular level following acute wounds: An in vivo/ex vivo study on pigs. Biomedicines. 2021; 9(4): 360. doi: 10.3390/biomedicines9040360, PMID: 33807251.
Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014; 346(6212): 954–959. doi: 10.1126/science.1260144, PMID: 25414304.
Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases. Methods Mol Biol. 2013; 1032: 109-119. doi: 10.1007/978-1-62703-496-8_8, PMID: 23943447.
Holloway S, Harding KG. Wound dressings. Surgery. 2022; 40: 25-32. doi: 10.1016/j.mpsur.2021.11.002.
Noli C, Miolo A. The mast cell in wound healing. Vet Dermatol. 2001; 12(6): 303-313. doi: 10.1046/j.0959-4493.2001.00272.x, PMID: 11844219.
Komi DE, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020; 58(3): 298-312. doi: 10.1007/s12016-019-08729-w, PMID: 30729428.
Chen L, DiPietro LA. Toll-like receptor function in acute wounds. Adv Wound Care (New Rochelle). 2017; 6(10): 344-355. doi: 10.1089/wound.2017.0734, PMID: 29062591.
Niebuhr M, Heratizadeh A, Wichmann K, Satzger I, Werfel T. Intrinsic alterations of pro‐inflammatory mediators in unstimulated and TLR‐2 stimulated keratinocytes from atopic dermatitis patients. Exp Dermatol. 2011; 20(6): 468-472. doi: 10.1111/j.1600-0625.2011.01277.x.
Uchi H, Terao H, Koga T, Furue M. Cytokines and chemokines in the epidermis. J Dermatol Sci. 2000; 24(Suppl 1): S29-S38. doi: 10.1016/s0923-1811(00)00138-9, PMID: 11137393.
Gröne A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002; 88(1-2): 1-12. doi: 10.1016/s0165-2427(02)00136-8, PMID: 12088639.
Sultana S, Adhikary R, Bishayi B. Neutralization of MMP-2 and TNFR1 regulates the severity of S. aureus-induced septic arthritis by differential alteration of local and systemic proinflammatory cytokines in mice. Inflammation. 2017; 40(3): 1028-1050. doi: 10.1007/s10753-017-0547-z, PMID: 28326455.
Bitschar K, Wolz C, Krismer B, Peschel A, Schittek B. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. J Dermatol Sci. 2017; 87(3): 215-220. doi: 10.1016/j.jdermsci.2017.06.003, PMID: 28655473.
Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009; 1(4): a000034. doi: 10.1101/cshperspect.a000034, PMID: 20066092.
Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017; 161(1): 1-13. doi: 10.5507/bp.2016.063, PMID: 28115750.
Wanke I, Skabytska Y, Kraft B, Peschel A, Biedermann T, Schittek B. Staphylococcus aureus skin colonization is promoted by barrier disruption and leads to local inflammation. Exp Dermatol. 2013; 22(2): 153-155. doi: 10.1111/exd.12083, PMID: 23362876.
Ferraro A, Buonocore SM, Auquier P, Nicolas I, Wallemacq H, Boutriau D, et al. Role and plasticity of Th1 and Th17 responses in immunity to Staphylococcus aureus. Hum Vaccin Immunother. 2019; 15(12): 2980-2992. doi: 10.1080/21645515.2019.1613126, PMID: 31149870.