Synthesis and Characterization of Toothpaste Formulated with <i>Nano-hydroxyapatite</i> and Silver Nanoparticles

Authors

  • Fastabiqul K. Rhamdiyah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Jl. Ketintang, Gayungan, Surabaya 60231, East Java, Indonesia
  • Sari E. Cahyaningrum Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Jl. Ketintang, Gayungan, Surabaya 60231, East Java, Indonesia
  • Rudiana Agustini Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Jl. Ketintang, Gayungan, Surabaya 60231, East Java, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i8.6

Keywords:

Toothpaste, Silver nanoparticles, Nano-hydroxyapatite, Dental caries

Abstract

Dental caries is a multifactorial chronic dental disease impacting individuals across various ages. Several studies have shown that cariogenic bacteria primarily cause this disease in the oral cavity, notably Streptococcus mutans. Thus, this study aimed to characterize and develop toothpaste formulations by incorporating nano-hydroxyapatite (nHA) and silver nanoparticles (AgNPs) as
active agents. The physicochemical properties of different formulations (F0-F5) were assessed, including odour, colour, taste, texture, consistency, homogeneity, pH, spreadability, and foaming ability. The antibacterial activity of the products obtained against Streptococcus mutans was tested using varying nHA concentrations (0.75, 1, and 1.25%). The results showed that the toothpaste
formulation containing 1% nHA showed the most significant inhibitory effect, leading to an inhibition zone of 15.58 mm in diameter. Based on these findings, toothpaste containing nHA and AgNPs as active constituents was safe and efficacious in preventing dental caries.

         Views | PDF Download | EPUB Download: 73 / 67 / 2

References

Bramantoro T, Setijanto RD, Palupi R, Aghazy AZ, Irmalia WR. Dental Caries and Associated Factors among Primary School Children in Metropolitan City with the Largest Javanese Race Population: A Cross-sectional Study. Contemp Clin Dent. 2019; 10(2): 274-283. doi:

4103/ccd.ccd_517_18.

Tinanoff, N. 12 - Dental caries. (6th ed.). Online: Elsevier Inc.; 2019. 169-179 p.

Chen X, Daliri EB-M, Kim N, Kim J-R, Yoo D, Oh D-H. Microbial Etiology and Prevention of Dental Caries: Exploiting Natural Products to Inhibit Cariogenic Biofilms. Pathogens. 2020; 9(7): 1–15. doi: 10.3390/pathogens9070569.

Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches K, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr. 2019; 7(1): 1-26. doi: 10.1128/microbiolspec.GPP3-0051-2018.

Damian L-R, Dumitrescu R, Alexa VT, Focht D, Schwartz C, Balean O, Jumance D, Obistioiu D, Lalescu D. Stefaniga S-A, Berbecea A, Fratila AD, Scurtu AD, Galuscan A. Impact of Dentistry Materials on Chemical Remineralisation/Infiltration versus Salivary Remineralisation of Enamel-In Vitro Study. Materials (Basel). 2022; 15(20): 7258.

Shahzad HB, Awais F, Shirazi U-e-R, Majeed HA, Rafique A, Shahbaz M. The impact of dental caries on oral health related quality of life amongst adult population in Lahore, Pakistan. Makara J Heal Res. 2020; 24(1): 1-7. doi: 10.7454/msk.v24i1.1074.

Lorenz K, Hoffmann T, Heumann C, Noack B. Effect of toothpaste containing amine fluoride and stannous chloride on the reduction of dental plaque and gingival inflammation. A randomized controlled 12-week home-use study. Int J of Dent Hyg. 2019; 17(3): 237-243. doi: 10.7454/msk.v24i1.1074.

Paul CC, Khan MAS, Sarkar PK, Hakim A, Waliullah M, Mandal BH. Assessment of the Level and Health Risk of Fluoride and Heavy Metals in Commercial Toothpastes in Bangladesh. Indones J Chem. 2020; 20(1):150-159. doi: 10.22146/ijc.43266.

Amaechi BT, AbdulAzees PA, Alshareif DO, Shehata MA, Lima PP de CS, Abdollahi A, Kalkhorani PS, Evans V. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open. 2019; 5(1): 1-15. doi: 10.1038/s41405-019-0026-8.

Meyer F, Enax J, Amaechi BT, Limeback H, Fabritius H-O, Ganss B, Pawinska M, Paszynka E. Hydroxyapatite as Remineralization Agent for Children’s Dental Care. Front Dent Med. 2022; 3: 1-10. doi: 10.3389/fdmed.2022.859560.

Mohideen H, Dahiya DS, Parsons D, Hussain H, Ahmed RS. Skeletal Fluorosis: A Case of Inhalant Abuse Leading to a Diagnosis of Colon Cancer. J Investig Med High Impact Case Rep. 2022; 10.

Wang Y, Jiang L, Zhao Y. Awareness of the Benefits and Risks Related to Using Fluoridated Toothpaste Among Doctors: A Population-Based Study. Med Sci Monit. 2019; 25: 6397-6404.

Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem Rev. 2021; 121(8): 4678-4742. doi: 10.1021/acs.chemrev.0c01263.

Anil A, Ibraheem WI, Meshni AA, Preethanath RS, Anil S. Nano-Hydroxyapatite (nHAp) in the Remineralization ofEarly Dental Caries:

A Scoping Review. Int J Env Res Pub Heal. 2022; 19(9): 1-14. doi: 10.3390/ijerph19095629.

Ibrahim M, Labaki M, Giraudon J-M, Lamonier J-F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. J Hazard Mater. 2020; 383: 12119. doi: 10.1016/j.jhazmat.2019.121139.

Filip DG, Surdu V-A, Paduraru AV, Andronescu E. Current Development in Biomaterials—Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater. 2022; 13(4) 248. doi: 10.3390/jfb13040248.

Imran E, Cooper PR, Ratnayake J, Ekambaram M, Mei ML. Potential Beneficial Effects of Hydroxyapatite Nanoparticles on Caries Lesions In Vitro—A Review of the literature. Dent J (Basel). 2023; 11(2):40. doi: 10.3390/dj11020040.

Hernawan AD, Anggresani L, Meirista I. Formulation of hydroxyapatite toothpaste from mackerel (Scomberomorus guttatus) bone waste. Chempublish J. 2021; 6(1): 34-45. doi: 10.22437/chp.v6i1.10859.

Rifada A, Af'idah BM, Aufia W, Vibriani A, Maghdalena M, Saputro K, Nugroho, DW, Iskandar MA, Cahyanto A, Noviyanto A, Rochman, NT. Effect of Nano Hydroxyapatite in Toothpaste on Controlling Oral Microbial Viability. IOP Conf Ser Mater Sci Eng. 2020; 924(1): 1-7. doi: 10.1088/1757-899X/924/1/012010.

Geeta RD, Vallabhaneni S, Fatima K. Comparative evaluation of remineralization potential of nanohydroxyapatite crystals, bioactive glass, casein phosphopeptide-amorphous calcium phosphate, and fluoride on initial enamel lesion (scanning electron microscope analysis) - An in vitro study. J Conserv Dent. 2020; 23(3): 275-279. doi: 10.4103/JCD.JCD_62_20.

Srivastava S, Saha S, Kumari M, Mohd S. Effect of Probiotic Curd on Salivary pH and Streptococcus mutans : A Double Blind Parallel Randomized Controlled Trial. J Clin Diagn Res. 2016; 10(2):ZC13-6. doi: 10.7860/JCDR/2016/15530.7178.

Amaechi, BT, Lemke, KC, Saha, S, Luong, MN, Gelfond J. Clinical efficacy of nanohydroxyapatite-containing toothpaste at relieving dentin hypersensitivity: an 8 weeks randomized control trial. BDJ Open. 2021; 7(1): 1-8. doi: 10.1038/s41405-021-00080-7.

Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, Lucaciu O, Dinu CM, Todea DA. Nanohydroxyapatite use in dentistry: a systematic review. Drug Metab Rev. 2020; 52(2): 319-332. doi: 10.1080/03602532.2020.1758713.

Gintu AR, Kristiani EBE, Martono Y. Characterization of toothpaste made from abrasive materials hydroxyapatite (HAP). J Kim Ris. 2023; 5(2): 120-126. doi: 10.20473/jkr.v5i2.22503.

Pushpalatha C, Gayathri VS, Sowmya SV, Augustine D, Alamoudi A, Zidane B, Albar NHM, Bhandi S. Nanohydroxyapatite in Dentistry: A comprehensive review. Saudi Dent J. 2023; 35(6): 741-752.

O’Hagan-Wong K, Enax J, Meyer F, Ganss B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology. 2022; 110(2): 223-230. doi: 10.1007/s10266-021-00675-4.

Sarembe S, Enax J, Morawietz M, Kiesow A, Meyer F. In Vitro Whitening Effect of a Hydroxyapatite-Based Oral Care Gel. Eur J Dent. 2020; 14(3): 335-341. doi: 10.1055/s-0040-1714759.

Chen L, Al-Bayatee S, Khurshid Z, Shavandi A, Brunton P, Ratnayake J. Hydroxyapatite in Oral Care Products—A Review. Materials (Basel). 2021; 14(17): 1-20. doi: 10.3390/ma14174865.

Muhaimin FI, Cahyaningrum SE, Lawarti RA, Maharani DK. Characterization and Antibacterial Activity Assessment of Hydroxyapatite-Betel Leaf Extract Formulation against Streptococcus mutans In Vitro and In Vivo. Indones J Chem. 2023; 23(2): 358-369. doi: 10.22146/ijc.77853.

Silva-Holguín PN, Reyes-López SY. Synthesis of Hydroxyapatite-Ag composite as antimicrobial agent. Dose Response. 2020; 18(3): 1-14. doi: 10.1177/1559325820951342.

Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int J Nanomedicine. 2020; 15: 3181-3191. doi: 10.2147/IJN.S253833 (2020).

Jinu U, Gomathi M, Saiqa I, Geetha N, Benelli G,Venkatachalam P. Green-engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbialpathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog. 2017; 105: 86-95. doi: 10.1016/j.micpath.2017.02.019.

Pushpalatha C, Bharkhavy KV, Shakir A, Augustine D, Sowmya SV, Bahammam HA, Bahammam SA, Albar NHM, Zidane B. The Anticariogenic Efficacy of Nano Silver Fluoride. Front Bioeng Biotechnol. 2022; 10. doi: 10.3389/fbioe.2022.931327.

Jalab J, Abdelwahed W, Kitaz A, Al-Kayali R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon. 2021; 7(9): e08033. doi: 10.1016/j.heliyon.2021.e08033.

Maarebia RZ, Wahab AW, Taba P. Synthesis and Characterization of Silver Nanoparticles Using Water Extract of Sarang Semut (Myrmecodia pendans) for Blood Glucose Sensors. Indones Chim Acta. 2019; 12(1) :29. doi: 10.20956/ica.v12i1.5881.

Afifah F, Cahyaningrum SE. Synthesis and Characterization of Hydroxyapatite from Beef Bone (Bos taurus) using Calcination Technique. Unesa J Chem. 2020; 9(3): 189-196. doi: 10.26740/ujc.v9n3.p189-196.

Nayem ASM, Sultana N, Haque MA, Miah B, Hasan MM, Islam T, Hasan MM, Awal A, Uddin J, Aziz MA, Ahammad AJS. Green Synthesis of Gold and Silver Nanoparticles by using Amorphophallus paeoniifolius tuber extract and evaluation of their antibacterial activity. Molecules. 2020; 25(20): 1-14. doi: 10.3390/molecules25204773.

Alslash M, Abdelwahed W, Kitaz A. Green synthesis of silver nanoparticles using Pistacia palaestina (Boiss). Extract: Evaluation of in vivo wound healing activity. J Res Pharm. 2023; 27(3): 1170-1187. doi: 10.29228/jrp.407.

Effendi MC, Pratiwi AR, Afifah F, Taufiq A. The Role of Chicken Egg Shell Nano- Nano-Hydroxyapatite as Fillers on the Surface Hardness of Glass Ionomer Cement. Malaysian J Fundam Appl Sc. 2021; 17(4): 475-484. doi: 10.11113/mjfas.v17n4.2192.

Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017; 249: 321-330. doi: 10.1016/j.cis.2017.04.007.

Al-Hamdan RS, Almutairi B, Kattan HF, Alresayes S, Abduljabbar T, Vohra F. Assessment of Hydroxyapatite Nanospheres Incorporated Dentin Adhesive. A SEM/EDX, Micro-Raman, Microtensile and Micro-Indentation Study. Coatings. 2020; 10(12): 1181. doi:

3390/coatings10121181.

Jaast S, Grewal A. Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity. Curr Res Green Sustain Chem. 2021; 4: 100195. doi: 10.1016/j.crgsc.2021.100195.43.

Jing Y, Li J, Zhang Y, Zhang R, Zheng Y, Hu B, Wu L, Zhang D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int J Biol Macromol. 2021; 183: 1317-1326. doi:

1016/j.ijbiomac.2021.04.178.

Jagtap AM, Kaulage SR, Kanse SS, Shelke VD, Gavade AS, Vambhurkar GB, Todkar RR, Dange VN. Preparation and Evaluation of Toothpaste. Asian J Pharm Anal. 2018; 8(4): 191-194. doi: 10.5958/2231-5675.2018.00035.2.

Phalke PL, Rukari TG, Jadhav AS. Formulation and Evaluation of Toothpaste Containing Combination of Aloe and Sodium Chloride. Int J Pharm Sci Res. 2019; 10(3): 1462-1467. doi: 10.13040/IJPSR.0975-8232.10.

Nuraskin C, Reca R, Salfiyadi T, Abdurrahman A, Faisal TI, Soraya C. Toothpaste Activity Test of Laban Leaf Methanol Extract (Vitex pinnata) Against The Growth of Streptococcus mutans Bacteria. Open Access Maced J Med Sci. 2021; 9(F): 95-100. doi: 10.3889/oamjms.2021.5702.

Adeleye OA, Bamiro O, Akpotu M, Adebowale M, Daodu J,Sodeinde MA. Physicochemical Evaluation and Antibacterial Activity of Massularia acuminata Herbal Toothpaste. Turk J Pharm Sci. 2021; 18(4): 476-482. doi: 10.4274/tjps.galenos.2020.42966.

Gautam D, Palkar P, Maule K, Singh S, Sawant G, Kuvalekar C, Rukari T, Jagtap VA. Preparation, Evaluation, and Comparison of Herbal Toothpaste with Marketed Herbal Toothpaste. Asian J Pharm Technol. 2020; 10(3): 165-169. doi: 10.5958/2231-5713.2020.00028.8.

Lindawati Z, Cahyaningrum, SE. Effect of Hydroxyapatite/Chitosan/Collagen Composition on Bone Graft Characteristics. Unesa J Chem. 2018; 7(3): 101-104. doi: doi.org/10.26740/ujc.v7n3.p%25p.

Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati V, Sultan A, Thygesen A, Mackevia A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomedicine. 2018; 13: 3571-3591. doi: 10.2147/IJN.S157958.

Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines. 2022; 10(11): 2792. doi: 10.3390/biomedicines10112792.

Hossain MR., Biplob AI, Sharif SR, Bhuiya AM, Sayem ASM. Antibacterial Activity of Green Synthesized Silver Nanoparticles of Lablab purpureus Flowers Extract against Human Pathogenic Bacteria. Trop J Nat Prod Res. 2023; 7(8): 3647-3651. doi: 10.26538/tnjpr/v/7i8.12.

Singh SP, Kumar S, Mathan S V, Tomar MS, Singh RK, Verma PK, Kumar A, Kumar S, Singh RP. Acharya A. Therapeutic application of Carica papaya leaf extract in the management of human diseases. DARU J Pharm Sci. 2020; 28(2): 735–44. Doi: 10.1007/s40199-020-00348-7.

Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm J. 2016; 24(4): 473-484. doi: 10.1016/j.jsps.2014.11.013.

Arsene MMJ, Viktorovna PI, Alla M, Mariya M, Davares AKL, Carime BZ, Anatolievna GO, Vyacheslavovna YN, Vladimirovna ZA, Andreevna SL, Aleksandrovna VE,Alekseevich BL, Nikolaïevna BM, Parfait K, Andrey V. Antimicrobial activity of phytofabricated silver

nanoparticles using carica papaya L. against Gram-negative bacteria. Vet World. 2023; 16(6): 1301-1311. doi: 10.14202/vetworld.2023.1301-1311.

Banala RR, Nagati VB, Karnati PR. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J Biol Sci. 2015; 22(5): 637-644. doi: 10.1016/j.sjbs.2015.01.007.

Purnamasari MD, Wijayati N. Antibacterial Synthesis of Silver Nanoparticles using Bioreductor Belt Leaf Extract with Microwave Irradiation. Indones J Chem Sci. 2016; 5(2):152-158.

Cahyaningrum SE, Herdyastuty N, Devina B, Supangat D. Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method. IOP Conf Ser Mater Sci Eng. 2018; 299(1): 1-5. doi: 10.1088/1757-899X/299/1/012039.

Muñoz-Sanchez ER, Arrieta-Gonzalez CD, QuintoHernandez A, Garcia-Hernandez E, Porcayo-Calderon J. Synthesis of hydroxyapatite from eggshell and its electrochemical characterization as a coating on titanium. Int J Electrochem Sci. 2023; 18(9): 100204. doi: 10.1016/j.ijoes.2023.100204.

Kumar KCV, Subha TJ, Ahila KG, Ravindran B, Chang SW, Mahmoud AH, Mohammed OB, Rathi MA. Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis. Saudi J Biol Sci. 2021; 28(1): 840-846. doi:10.1016/j.sjbs.2020.11.020.

Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci. 2016; 9(3): 217-227. doi: 10.1016/j.jrras.2015.10.002.

Vijapur LS, Srinivas Y, Desai AR, Gudigennavar AS, Shidramshettar SL, Yaragattimath P. Development of biosynthesized silver nanoparticles from Cinnamomum tamala for anti-oxidant, anti-microbial and anti-cancer activity. J Res Pharm. 2023; 27(2): 769-782. doi: 10.29228/jrp.359.

Bee S-L, Bustami Y, Ul-Hamid A, Lim K, Hamid ZAA. Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J Mater Sci Mater Med. 2021; 32(9): 106. DOI: 10.1007/s10856-021-06590-y.

Hossain N, Islam MA, Chowdhury MA. Synthesis and characterization of plant-extracted silver nanoparticles and advances in dental implant applications. Heliyon. 2022; 8(12): e12313. doi: 10.1016/j.heliyon.2022.e12313.Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2017; 12(7): 908-931. doi: 10.1016/j.arabjc.2017.05.011.

Hariani PL, Said M, Salni. Effect of sintering on the mechanical properties of hydroxyapatite from fish bone (Pangasius Hypophthalmus). IOP Conf Ser Mater Sci Eng. 2019; 509: 012109. doi: 10.1088/1757-899X/509/1/012109.

Jang SJ, Kim SE, Han TS, Son JS, Kang SS, Choi SH. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets. In Vivo (Brooklyn). 2017; 31(3): 335-341. doi: 10.21873/invivo.11064.

Salari Z, Danafar F, Dabaghi S, Ataei SA. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. J Saudi Chem Soc. 2016; 20(4): 459-464. doi: 10.1016/j.jscs.2014.10.004.

Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007; 18(10): 105104. doi: 10.1088/0957-4484/18/10/105104

Byra N, Krukowski S, Sadlo J, Kolodziejski W. Composites Containing Nanohydroxyapatites and a Stable TEMPO Radical: Preparation and Characterization Using Spectrophotometry, EPR and 1H MAS NMR. Materials (Basel). 2022; 15(6): 1-28. doi: 10.3390/ma15062043.

Kavitha C, Dasan KP. Nanosilver/hyperbranched polyester (HBPE): Synthesis, characterization, and antibacterial activity. J Coatings Technol Res. 2013; 10(5): 669-678. doi: 10.1007/s11998-013-9499-x.

Widyastuti W, Fantari HR, Putri VR, Pertiwi I. Toothpaste formulation of orange (Citrus sp.) peel extract and mintleaves (Mentha Piperita L.) and activity against Streptococcus mutans bacteria. J Pharmascience. 2019; 6(2): 111. doi: 10.20527/jps.v6i2.7357.

Asrina R. Stabel toothpaste formulation from ethanol extract of Gamal leaves extract (Gliricida sepium) to prevent dental caries. J Farm Sandi Karsa. 2019; 18(5): 99-104. doi:10.36060/jfs.v5i2.50.

Tabatabaei MH, Mahounak FS, Asgari N, Moradi Z. Cytotoxicity of the Ingredients of Commonly Used Toothpastes and Mouthwashes on Human Gingival Fibroblasts. Front Dent. 2020; 16(6):450-457. doi: 10.18502/fid.v16i6.3444.

Behra JS, Mattsson J, Cayre OJ, Robles ESJ, Tang H, Hunter TN. Characterization of Sodium Carboxymethyl Cellulose Aqueous Solutions to Support Complex Product Formulation: A Rheology and Light Scattering Study. ACS Appl Polym Mater. 2019; 1(3): 344-358. doi: 10.1021/acsapm.8b00110.

Zhao H, Ren S, Yang H, Tang S, Guo C, Liu M, Tao Q, Ming T, Xu H. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed Pharmacother. 2022; 154: 113559. doi: 10.1016/j.biopha.2022.113559.

Jannah Z, Mubarok H, Syamsiyah F, H Putri AA, Rohmawati L. Preparation of Calcium Carbonate (from Shellfish)/Magnesium Oxide Composites as an Antibacterial Agent. IOP Conf Ser Mater Sci Eng. 2018; 367: 012005. doi: 10.1088/1757-899X/367/1/012005.

Dionysopoulos D, Papageorgiou S, Papadopoulos C, Davidopoulou S, Konstantinidis A, Tolidis K. Effect ofWhitening Toothpastes with Different Active Agents on the Abrasive Wear of Dentin Following Tooth Brushing Simulation. J Funct Biomater. 2023; 14(5): 268. doi: 10.3390/jfb14050268.

Sinaga MH, Bintarti T. The combination of kecombrang flowers (Etlinger elation JACK) and banana peels in toothpaste formulations are effective in antibacterial testing against Streptococcus mutans and Escherichia coli. J Ilm PANNMED. 2019; 14(1): 85-90. doi:

36911/pannmed.v14i1.568.

Lini R. Formulation and Physical Properties Test of Gel Toothpaste for Dry Red Ginger (Zingiber Officinale Roscoe Var. Rubrum) Extract. J Penelit Farm Indones. 2021; 10(1): 6-11. doi: 10.51887/jpfi.v10i1.994.

Cheng C-Y, Balsandorj Z, Hao Z, Pan L. High-precision measurement of pH in the full toothpaste using NMR chemical shift. J Magn Reson. 2020; 317: 106771. doi:10.1016/j.jmr.2020.106771.

Hasan M, Solang M, Kumaji SS. Analysis of the number of bacteria in Anadara granosa shell toothpaste provided by Citrus Medika with different storage times. Biospecies. 2021; 14(1): 46-52.

Riani M, Darusman F, Suparman A. Formulation of toothpaste preparations from Arabic bidara leaf extract (Ziziphus Spina-Christi L.). Pros Farm. 2020; 1(2): 636-642. doi: 10.29313/.V6I2.23556.

Dinis M, Agnello M, Cen L, Shokeen B, He X, Shi W, WongDTW, Lux R, Tran NC. Oral Microbiome: Streptococcus mutans/Caries Concordant-Discordant Children. Front Microbiol. 2022;13. doi: 10.3389/fmicb.2022.782825.

Jarriyawattanachaikul W, Chaveerach P, Chokesajjawatee N. Antimicrobial Activity of Thai-herbal Plants against Food-borne Pathogens E. Coli, S. Aureus and C. jejuni. Agric Agric Sci Procedia. 2016; 11: 20-24. doi: 10.1016/j.aaspro.2016.12.004.

Vijayaraghavan P, Rathi MA, Almaary KS, Alkhattaf FS, Elbadawi YB, Chang SW, Ravindran B. Preparation and antibacterial application of hydroxyapatite doped silver nanoparticles derived from chicken bone. J King Saud Univ - Sci. 2022; 34(2): 101749. doi:

1016/j.jksus.2021.101749.

Downloads

Published

2024-09-01

How to Cite

Rhamdiyah, F. K., Cahyaningrum, S. E., & Agustini, R. (2024). Synthesis and Characterization of Toothpaste Formulated with <i>Nano-hydroxyapatite</i> and Silver Nanoparticles. Tropical Journal of Natural Product Research (TJNPR), 8(8), 7970–7978. https://doi.org/10.26538/tjnpr/v8i8.6