Assessment of Antifungal Potentials of Ethanol Extract of <i>Cleistocalyx operculatus</i> Roxb Against <i>Cercospora nicotianae</i> for Pesticidal Applicability: <i>In Vitro</i> and <i>In Silico</i> Screening

Authors

  • Nguyen T. T. Hai Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam
  • Thanh Q. Bui Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam
  • Phan T. Quy Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000 Vietnam
  • Nguyen V. Phu Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam
  • Nguyen T. T. Thuy Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
  • Thi V. A. Nguyen Faculty of Engineering and Food Technology, University of Agriculture and Forestry, Hue University, Hue 530000, Vietnam
  • Nguyen T. Triet Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
  • Duy T. Pham Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Vietnam
  • Van D. Tran Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
  • Nguyen T. A. Nhung Department of Chemistry, University of Sciences, Hue University, Hue 530000, Vietnam

DOI:

https://doi.org/10.26538/tjnpr/v8i8.3

Keywords:

Antifungal activity, In silico, In vitro, Cercospora nicotianae, Cleistocalyx operculatus

Abstract

Cleistocalyx operculatus is ubiquitous and known by folk experiences for its antimicrobial properties, thus promising as a low-cost green pesticide. In this work, the plant ethanol extract was investigated against Cercospora nicotianae, a pathogenic fungus implicated in the leaf spot in Pennywort. Characterisation of the plant extract showed 21 identifiable constituents (1-21), with the major components: 4’,5'-dimethoxy-2'-hydroxy-4-methylchalcone (21; 41.71 %), phytol (15; 8.46 %), and 5.7-dimethoxyflavanone (20; 5.20 %). The in vitro antifungal screening of the extract revealed potent inhibitory capacity up to 7 days after inoculation (concentration = 9.54mg.mL-1 ). The inhibitory potential was predicted by docking simulation, i.e., 19-Q6DQW3 (DS ̅̅̅̅ - 10.7 kcal.mol-1 ; DSmax -12.7 kcal.mol-1 ) > 21-Q6DQW3 (DS ̅̅̅̅ -10.3 kcal.mol-1 ; DSmax -11.9 kcal.mol-1 ) > 20-Q6DQW3 (DS ̅̅̅̅ -10.3 kcal.mol-1 ; DSmax -11.7 kcal.mol-1). The chemical potentiality was derived from quantum calculation, i.e., 22 (-1172.77 a.u.) > 21 ≈ 19 (approx. - 1000 a.u.) > 20 (-ca. -950 a.u.) for chemical stability, and 3 (3.40 Debye), 15 (2.47 Debye), and 5 (2.03 Debye) for physical compatibility. The suitability for biological and pesticidal applications was justified by physicochemical analyses. The results revealed a firm correlation between the extracted major constituents (20 and 21) and the total antifungal activity against C. nicotianae, thus encouraging its local usage.

         Views | PDF Download | EPUB Download: 136 / 94 / 4

References

Gamage A, Gangahagedara R, Gamage J, Jayasinghe N, Kodikara N, Suraweera P, Merah O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023; 1(1):ID 100005.

Mfarrej MFB, Rara FM. Competitive, sustainable natural pesticides. Acta Ecol Sin. 2019;39(2):145–151.

Parveen S, Wani AH, Ganie AA, Pala SA, Mir RA. Antifungal activity of some plant extracts on some pathogenic fungi. Arch Phytopathol Plant Prot. 2014;47(3):279–284.

Botanic Gardens Conservation International (BGCI) ISGTSG. Syzygium nervosum. The IUCN Red List of Threatened Species. 2018.

Dung NX, Luu H Van, Khoi TT, Leclercq PA. GC and GC/MS analysis of the leaf oil of Cleistocalyx operculatus Roxb. Merr. et Perry (Syn. Eugenia operculata Roxb.; Syzygium nervosum DC.). J Essent Oil Res. 1994;6(6):661–662.

Prasanth MI, Sivamaruthi BS, Sukprasansap M, Chuchawankul S, Tencomnao T, Chaiyasut C. Functional properties and bioactivities of Cleistocalyx nervosum var. paniala berry plant: a review. Food Sci Technol. 2020;40:369– 373.

Thuy BTP, Hieu LT, My TTA, Hai NTT, Loan HTP, Thuy NTT, Triet NT, Van Anh TT, Dieu NTX, Quy PT. Screening for Streptococcus pyogenes antibacterial and Candida albicans antifungal bioactivities of organic compounds in natural essential oils of Piper betle L., Cleistocalyx operculatus L. and Ageratum conyzoides L. Chem Pap. 2021;75(4):1507–1519.

Pham TL, Doan VD, Le Dang Q, Nguyen TA, Nguyen TLH, Tran TDT, Nguyen TPL, Vo TKA, Nguyen TH. Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties. RSC Adv. 2023;13(30):20994–1007.

Gunsolus JL, Curran WS. Herbicide mode of action and injury symptoms. order. 1991;612:625–817.

Fodor J, Kámán-Tóth E, Dankó T, Schwarczinger I, Bozsó Z, Pogány M. Description of the Nicotiana benthamiana - Cercospora nicotianae pathosystem. Phytopathology. 2018;108(1):149–155.

Thomas E, Herrero S, Eng H, Gomaa N, Gillikin J, Noar R, Beseli A, Daub ME. Engineering Cercospora disease resistance via expression of Cercospora nicotianae cercosporin-resistance genes and silencing of cercosporin production in tobacco. PLoS One. 2020;15(3):ID e0230362.

Sautua FJ, Searight J, Doyle VP, Scandiani MM, Carmona MA. Cercospora nicotianae is a causal agent of Cercospora leaf blight of soybean. Eur J plant Pathol. 2020;156:1227– 1231.

Zhao Q, Chen X, Liu DY, Xia CJ, Yang JG, Lv HK, Qian YM, Wang J. First report of Cercospora nicotianae causing frog eye spot in Cigar Tobacco in Hainan, China. Plant Dis. 2020;104(12):ID 3257.

Daub ME, Hangarter RP. Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 1983;73(3):855–857.

Beseli A, Noar R, Daub ME. Characterisation of Cercospora nicotianae hypothetical proteins in cercosporin resistance. PLoS One. 2015;10(10):ID e0140676.

Chen H, Lee M, Daub ME, Chung K. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Mol Microbiol. 2007;64(3):755–770.

Newman AG, Townsend CA. Molecular characterisation of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J Am Chem Soc. 2016;138(12):4219–4228.

Newman AG, Vagstad AL, Belecki K, Scheerer JR, Townsend CA. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function. Chem Commun. 2012;48(96):11772–11774.

Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Nhung NTA. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv. 2021;11(20):11959–11975.

Thao TTP, Bui TQ, Hai NTT, Huynh LK, Quy PT, Bao NC, Dung NT, Chi NL, Van Loc T, Smirnova IE. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic inhibitors: experimental bioassay-based evidence and theoretical

computation-based prediction. RSC Adv. 2021; 11(57):35765–35782.

Nguyen NPD, Quy PT, To DC, Bui TQ, Phu N V., My TTA, Nguyen PH, Kien NH, Hai NTT, Nhung NTA. Combinatory in silico study on anti-diabetic potential of Ganoderma lucidum compounds against α-glucosidase. Trop J Nat Prod Res. 2023;7(7):3421–3432.

Quy PT, Bui TQ, Bon N V, Phung PTK, Duc DPN, Nhan DT,Phu N V, To DC, Nhung NTA. Euonymus laxiflorus Champ. bioactive compounds inhibited α-glucosidase and protein phosphatase 1B - a computational approach towards the discovery of antidiabetic drugs. Trop J Nat Prod Res. 2023;7(5):2974–2991.

Sánchez-Pérez JDL, Jaimes-Lara MG, Salgado-Garciglia R, López-Meza JE. Root extracts from Mexican avocado (Persea americana var. drymifolia) inhibit the mycelial growth of the oomycete Phytophthora cinnamomi. Eur J Plant Pathol. 2009;124:595–601.

Pandey DK, Tripathi NN, Tripathi RD, Dixit SN. Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens. J Plant Dis Prot. 1982;89(6):344–349.

Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada, 2024.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, J. M. Gaussian, M. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2009.

Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrisation for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput. 2006;2(2):364–382.

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–746.

Cameron DR. Computer software reviews. J Am Chem Soc. 2001;123(35):8644–8645.

Gasteiger J, Marsili M. Iterative partial equalisation of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980; 36(22):3219–3228.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R, Singh A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorganic Med Chem Lett. 2011;21(24):7246–7250.

Mazumdera J, Chakraborty R, Sena S, Vadrab S, Dec B, Ravi TK. Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem. 2009;1(2):188–198.

Byrd AL, Segre JA. Adapting Koch’s postulates. Science. 2016;351(6270):224–226.

Dall’Agnol JC, Pezzini MF, Uribe NS, Joveleviths D. Systemic effects of the pesticide mancozeb - A literature review. Eur Rev Med Pharmacol Sci. 2021;25(11):4113– 4120.

Thuy BTP, My TTA, Hai NTT, Loan HTP, Hieu LT, Hoa TT, Bui TQ, Tuong HN, Thuy NTT, Dung DK, Van Tat P, Quy PT, Nhung NTA. A molecular docking simulation study on potent inhibitors against Rhizoctonia solani and Magnaporthe oryzae in rice: silver-tetrylene and bis-silver-tetrylene complexes vs. validamycin and tricyclazole pesticides. Struct Chem. 2021;32(1):135–148.

Thi Thanh Hai N, Bui TQ, Thi Ai My T, Thi Phuong Loan H, Thai Hoa T, Tu Quy P, Thi Thu Thuy N, Thanh Nhan D, Thi Ai Nhung N. In silico inhibitability of copper carbenes and silylenes against Rhizoctonia solani and Magnaporthe oryzae. J Chem. 2021;2021:ID 5555521.

Feynman R. The Feynman lectures on physics - Volume II. Millenium. Gottlieb MA, editor. New York: Basic Books; 2010. 11.3.

Sangster JM. Octanol-water partition coefficients: fundamentals and physical chemistry. Vol. 1. New Jersey: John Wiley & Sons; 1997.

Downloads

Published

2024-09-01

How to Cite

Hai, N. T. T., Bui, T. Q., Quy, P. T., Phu, N. V., Thuy, N. T. T., Nguyen, T. V. A., … Nhung, N. T. A. (2024). Assessment of Antifungal Potentials of Ethanol Extract of <i>Cleistocalyx operculatus</i> Roxb Against <i>Cercospora nicotianae</i> for Pesticidal Applicability: <i>In Vitro</i> and <i>In Silico</i> Screening. Tropical Journal of Natural Product Research (TJNPR), 8(8), 7947–7955. https://doi.org/10.26538/tjnpr/v8i8.3

Most read articles by the same author(s)