The Comparison of Phytocompounds and Antibacterial Activity of Moringa oleifera Leaves and its Endophytic Fungi on Different Environment Conditions

Main Article Content

Eka Sukmawaty
Ahyar Ahmad
Abdul Karim
Zaraswati Dwyana
Harningsih Karim
Masriany
Zulkarnain
Devi Armita
Rahmat F. Alir
Siti H. Larekeng

Abstract

The bioactivity of plant secondary metabolites is influenced by the plants' environment and the symbiotic endophytic fungi in their tissues. This study aims to compare the effect of differences in agro-climatic conditions and geographical location on phytocompound and the antibacterial activity of Moringa oleifera methanol extract and their endophytic fungi. Samples were collected from 2 locations with different environmental conditions. The phytocompound analysis was conducted with FTIR and GCMS. The antibacterial activity was evaluated to the tested bacteria Escherichia coli, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis. Analysis of phytocompound revealed endophytic fungi have greater compounds than the leaves. Antibacterial activity in endophyte fungi and leaves in location 2 is higher than in location 2. Two isolates showed the best antibacterial activity from location 1 and location 2. EN5 and J14 had inhibition zones respectively against E. coli (30.5±0.7; 20±0), S. aureus (33.5±1.7; 19±4.2), S. typhi (30.5±0.7; 20±0) and against B. subtilis. (15.3±1.4; 11.5±0.7). Based on this, it was concluded that differences in environmental conditions affect the phytocompounds and bioactivity of Moringa leaves and their colonizing endophytic fungi.

Article Details

How to Cite
Sukmawaty, E., Ahmad, A., Karim, A., Dwyana, Z., Karim, H., Masriany, Zulkarnain, Armita, D., Alir, R. F., & Larekeng, S. H. (2024). The Comparison of Phytocompounds and Antibacterial Activity of Moringa oleifera Leaves and its Endophytic Fungi on Different Environment Conditions. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7899-7908. https://doi.org/10.26538/tjnpr/v8i7.37
Section
Articles
Author Biographies

Eka Sukmawaty, Doctoral Program, Chemistry Department, Hasanuddin University, Makassar 90245, Indonesia

Biology Department, UIN Alauddin Makassar, Makassar 92118, Indonesia

Ahyar Ahmad, Chemistry Department Hasanuddin University, Makassar 90245, Indonesia

Puslitbang Biopolimer dan Bioproduk, Institute for Research and Community Services (LPPM), Hasanuddin University, Makassar 90245, Indonesia

Siti H. Larekeng, Research Collaboration Center for KARST Microbes BRIN-LPPM, Hasanuddin University, Makassar 90245, Indonesia

Faculty of Forestry, Hasanuddin University, Makassar 90245, Indonesia

References

Paikra BK, Dhongade HKJ, Gidwani B. Phytochemistry and Pharmacology of Moringa oleifera Lam. J Pharmacopuncture. 2017;20(3):194–200.

Al-husnan LA, Alkahtani MDF. Impact of Moringa aqueous extract on pathogenic bacteria and fungi in vitro. Ann Agric Sci. 2016;61(2):247–250.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int J Mol Sci. 2015;16(6):12791–12835.

Nizioł-Łukaszewska Z, Furman-Toczek D, Bujak T, Wasilewski T, Hordyjewicz-Baran Z. Moringa oleifera L. Extracts as Bioactive Ingredients That Increase Safety of Body Wash Cosmetics. Dermatol Res Pract. 2020;1:1-14.

Ade FY, Supratman U, Sianipar NF, Gunadi JW, Radhiyanti PT, Lesmana, R. A Review of the Phytochemical, Usability Component, and Molecular Mechanisms of Moringa oleifera. Trop J Nat Prod Res. 2022;6(12): 1906–1913.

Rani NZA, Husain K, Kumolosasi E. Moringa genus: A review of phytochemistry and pharmacology. Front Pharmacol. 2018;9(108):1–26.

Anzano A, de Falco B, Ammar M, Ricciardelli A, Grauso L, Sabbah M, Troselj V, Lanzotti V. Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds. Molecules. 2022;27(24):1–12.

Ervianingsih, Mursyid M, Annisa RN, Zahran I, Langkong J, Kamaruddin I. Antimicrobial activity of moringa leaf (Moringa oleifera L.) extract against the growth of Staphylococcus epidermidis. IOP Conf Ser Earth Environ Sci. 2019;343(1):6–10.

Oladeji OS, Odelade KA, Oloke JK. Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African J Sci Technol Innov Dev. 2020;12(1):79–84.

Li Y, Kong D, Fu Y, Sussman MR, Wu H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem. 2020;148:80–89.

Verma N, Shukla S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants. 2015;2(4):105–13.

Barakat H, Ghazal GA. Physicochemical Properties of Moringa oleifera Seeds and Their Edible Oil Cultivated at Different Regions in Egypt. Food Nutr Sci. 2016;07(06):472–484.

Touré D, Kouamé BKFP, Bedi G, Joseph A, Guessennd N, Oussou R, Chalchat JR, Dosso M, Tonzibo F. Effect of geographical location and antibacterial activities of essential oils from Ivoirian Chromolaena odorata (L) R. M. King & Robinson (Asteraceae). J Pharmacogn Phyther. 2014;6(6):70–78.

Ukwueze CK, Okogwu OI, Ebem EC, Nwonumara GN, Nwodo JN. Evaluation of the Influence of Geographical Location on

Phytochemical Composition of Moringa oleifera Seeds. World Appl Sci J. 2019;37(3):196–201.

Mubarak K, Natsir H, Wahab AW, Satrimafitrah P. Analysis of α-Tokopherol (Vitamin E) Extracted from Moringa Leaves (Moringa oleifera Lam) Collected from Seashore and Highland Areas and Its Potencyl as Antioxidant. Kovalen. 2017;3(1):78-88.

Tiwari P, Bae H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms. 2022;10(360):1-43.

Zheng R, Li S, Zhang X, Zhao C. Biological activities of some new secondary metabolites isolated from endophytic fungi: A review study. Int J Mol Sci. 2021;22(2):1–75.

Rustamova N, Bozorov K, Efferth T, Yili A. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochem Rev. 2020;19:425–448.

Odelade KA, Babalola OO. Bacteria, fungi, and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health. 2019;16(20):3873.

Igiehon NO, Babalola OO, Cheseto X, Torto B. Effects of rhizobia and Arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol Res. 2021;242(126640):1-16.

Huang Y-L. Effect of Host, Environment and Fungal Growth on Fungal Leaf Endophyte Communities in Taiwan. J Fungi. 2020;6(4):244.

Jin J, Zhao Q, Zhang XM, Li WJ. Research progress on bioactive products from endophytes. J Microbiol. 2018;38:103–113.

Mosquera WG, Criado LY, Guerra BE. Antimicrobial activity of endophytic fungi from the medicinal plants Mammea americana (Calophyllaceae) and Moringa oleifera (Moringaceae). Biomedica. 2020;40(1):55–71.

Silva, Pereira D, Cardoso, Silva M, Macedo, Jose A. Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics. 2022;11(1509):1-45.

Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol. 2022;13(928037):1-15.

Hamzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front Microbiol. 2018;9:1–17.

El-Barnossi A, Moussaid F, Iraqi HA. Antifungal activity of Bacillussp. Gn-A11-18 isolated from decomposing solid green household waste in water and soil against Candida albicans and Aspergillus Niger. E3S Web Conf. 2020;150:02003.

Fadhila G.S AA, Darwis W, Wibowo RH, Sipriyadi S, Supriati R. Antibacterial Activity of the Ethanolic Extract of Sembung Rambat (Mikania micrantha Kunth) Leaves Against Bacillus subtilis. Nat Sci J Sci Technol. 2021;10(1):06–11.

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin PL. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review. Front Microbiol. 2016;9(7):906.

Jiang S, Duan J, Tao J-H, Yan H, Zheng JB. Ecological distribution and elicitor activities of endophytic fungi in Changium smyrnioides. 2010;1(41):121–5.

Lyons KG, Mann M, Lenihan M, Roybal O, Carroll K, Reynoso K, Kivlin SN, Taylor DL, Rudgers JA. Culturable root endophyte communities are shaped by both warming and plant host identity in the Rocky Mountains, USA. Fungal Ecol. 2021;49:101002.

Bowman EA, Arnold AE. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am J Bot. 2018;105(4):687–699.

Cobian GM, Egan CP, Amend AS. Plant-microbe specificity varies as a function of elevation. ISME J. 2019;13(11):2778–2788.

Afkhami ME, Rudgers JA, Stachowicz JJ. Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology. 2014;95(4):833–844.

Kivlin SN, Lynn JS, Kazenel MR, Beals KK, Rudgers JA. Biogeography of plant-associated fungal symbionts in mountain ecosystems: A meta-analysis. Divers Distrib. 2017;23(9):1067–1077.

Crandall SG, Gilbert GS. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation. Atmos Environ. 2017;162:87–99.

DeMers M, May G. Habitat-scale heterogeneity maintains fungal endophyte diversity in two native prairie legumes. Mycologia. 2021;113(1):20–32.

Aleynova OA, Nityagovsky NN, Suprun AR, Ananev AA, Dubrovina AS, Kiselev KV. The Diversity of Fungal Endophytes from Wild Grape Vitis amurensis Rupr. Plants. 2022;11(21):2897.

Del Olmo-Ruiz M, Arnold AE. Community structure of fern-affiliated endophytes in three neotropical forests. J Trop Ecol. 2017;33(1):60–73.

Mishra S, Priyanka, Sharma S. Metabolomic Insights Into Endophyte-Derived Bioactive Compounds. Front Microbiol. 2022;13:835931.

Tiwari A, Mahadik KR, Gabhe SY. Piperine: A comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov. 2020;7:100027.

Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X. Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol. 2010;1:567–576.

Ervianingsih, Mursyid M, Annisa RN, Zahran I, Langkong J, Kamaruddin I. Antimicrobial activity of moringa leaf (Moringa oleifera L.) extract against the growth of Staphylococcus epidermidis. IOP Conf Ser Earth Environ Sci. 2019;343(1):012145.

Fouad EA, Abu EASM, Kandil MM. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess. Vet world. 2019;12(6):802–808.

Enerijiofi KE, Akapo FH, Erhabor JO. GC–MS analysis and antibacterial activities of Moringa oleifera leaf extracts on selected clinical bacterial isolates. Bull Natl Res Cent. 2021;45(179)1-10.

Eremwanarue OA, Shittu HO. Antimicrobial activity of Moringa oleifera leaf extracts on multiple drug-resistant bacterial isolates from urine samples in Benin City. Niger J Biotechnol. 2019;35(2):16-26.

Ibrahim IA, Jabbour AA, Abdulmajeed AM, Elhady ME, Almaroai YA, Hashim AM. Adaptive Responses of Four Medicinal Plants to High Altitude Oxidative Stresses through the Regulation of Antioxidants and Secondary Metabolites. Agronomy. 2022;12:3032.

Adeosun, Bamise W, Bodede O, Prinsloo G. Effect of Different Climatic Regions and Seasonal Variation on the Antibacterial and Antifungal Activity and Chemical Profile. Metabolites. 2022;12:758.

Vilkickyte G, Raudone L. Phenological and Geographical Effects on Phenolic and Triterpenoid Content in Vaccinium vitis-idaea L.

Leaves. Plants. 2021;10(10):1986.

Naseem U. Impact of geographical locations on Mentha spicata antibacterial activities. J Med Plants Res. 2012;6(7).

Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants, and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact. 2023;22(1):1–19.

Packiaraj R, Jeyakumar S, Ayyappan N, Adhirajan N, Premkumar G, Rajarathinam K, Muthuramkumar S. Antimicrobial and

cytotoxic activities of endophytic fungus Colletotrichum gloeosporioides isolated from endemic tree Cinnamomum malabatrum. Stud Fungi. 2016;1(1):104–13.

Abonyi DO, Eze PM, Abba CC, Chukwunwejim CR, Ejikeugwu CP, Okoye FBC, Esimone CO. Metabolites of endophytic Colletotrichum gloeosporioides isolated from leaves of Carica papaya. Am J Essent Oils Nat Prod. 2019;7(1):39–46.

Nangmo KP, Akone SH, Tsamo TA, Zhen L, Müller WEG, Proksch P, Nkengfack EN. Colletotrin: a sesquiterpene lactone from the endophytic fungus Colletotrichum gloeosporioides associated with Trichilia monadelpha. Z Naturforsch. 2017;72(10):697–703.

Lutfia A, Munir E, Yurnaliza Y, Basyuni M. Antagonistic activity of endophytic fungi isolated from Globba patens miq. Rhizome against human pathogenic bacteria. J Pure Appl Microbiol. 2021;15(1):232–9.

Talukdar R, Tayung K. Antimicrobial Activities Of Endophytic Fungi Isolated From Three Ethno-Medicinal Plants Of Assam. J Bio Innov. 2020;9(6):93–7.

Moron LS, Lim Y-W, Dela Cruz TEE. Antimicrobial activities of crude culture extract from mangrove fungal endophytes collected in Luzon Island, Philippines. Philipp Sci Lett. 2018;11(28):28-36.

Hastuti US, Sulisetijono S, Thoyibah C, Pratiwi SH, Khotimah K. Histological Observation, Identification, and Secondary Metabolites Content in Endophytic Fungi of Mahogany Tree (Swietenia mahagoni Jacq ) . Proc 7th Int Conf Biol Sci (ICBS 2021). 2022;22:156–64.

Jayawardena RS, Bhunjun CS, Hyde KD, Gentekaki E, Itthayakorn P. Colletotrichum: lifestyles, biology, morpho-species, species complexes and accepted species. Mycosphere. 2021;12(1):519–669.

Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal DL, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanang S, Zeng XY, Liyanage KK, Liu NG, Karunarathna A, Hapuarachchi KK, Lungharn T, Raspe O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraleuk N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100. Fungal Diversity. 2020;103: 87–218.

Zheng H, Yu Z, Jiang X, Fang L, Qiao M. Endophytic Colletotrichum Species from Aquatic Plants in Southwest China. J Fungi. 2022;8(87):1-29.

Jayawardena RS, Hyde KD, Damm U, Cai L, Liu M, Li XH, Zhang W, Zhao WS, Yan JY. Notes on currently accepted species of Colletotrichum. Mycosphere. 2016;7(8):1192–260.

Fontana DC, de Paula S, Torres AG, de Souza VHM, Pascholati SF, Schmidt D, Neto DD. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens. 2021;10(5):1–28.

Ramadhani I, Rohadi H, Yuliani Y, Ilyas M. Study on Endophytic Fungi Associated with Moringa oleifera Lam. Collected from Lombok Island, West Nusa Tenggara. Ann Bogor. 2021;24(2):66.

Ma X, Nontachaiyapoom S, Jayawardena RS, Hyde KD, Gentekaki E, Zhou S, Qian Y, Wen T, Kang J. Endophytic Colletotrichum species from Dendrobium spp. In China and northern Thailand. Myco Keys. 2018;43:23–57.

Lei HM, Ma N, Wang T, Zhao PJ. Metabolites from the endophytic fungus Colletotrichum sp. F168. Nat Prod Res. 2021;35(7):1077–83.

Silva D. Evaluation of the phytotoxic effect of extracts from endophytic fungi Colletotrichum dianesei and Xylaria sp. isolated from Palicourea corymbifera (Rubiaceae). Agrociencia Uruguay. 2020;24(2):1–9.

Pillai TG. Pathogen to Endophytic Transmission in Fungi- A Proteomics Approach. SOJ Microbiol Infect Dis. 2017;5(3):1–5.

Collinge DB, Jensen B, Jørgensen HJL. Fungal endophytes in plants and their relationship to plant disease. Curr Opin Microbiol. 2022;69:102177.