Interactive Properties of Alkaloids from Datura stramonium, Moringa oleifera, and Carica papaya with Human Receptor Proteins of Psychoactive Compounds from Cannabis sativa and Nicotiana tabacum

Main Article Content

Habeeb A. Bankole
Rahmon I. Kanmodi
Mutiu I. Kazeem
Adedoja D. Wusu
Azeez A. Fatai
Regina T. Oddiri
Aaron Boakye
Abdul-Quddus K. Oyedele

Abstract

Datura stramonium, Moringa oleifera and Carica papaya are common plants in Nigeria that have been reported to possess some psychoactive effects. However, the interactions of their alkaloids with the molecular targets of common psychoactive compounds are not well established. This study assessed the interactive potentials of alkaloids from these plants with α4β2 nicotinic acetylcholine receptor (α4β2 nAChR) of nicotine from Nicotiana tabacum and the cannabinoid receptor 1 (CB1) of delta-9-tetrahydrocannabinol (THC) from Cannabis sativa. Protein structures were retrieved from Protein Data Bank while PubChem was used to obtain ligand structures. Molecular docking using UCSF Chimera determined the binding affinity of protein-ligand complexes, followed by molecular dynamics simulations to evaluate root mean square deviation and radius of gyration. ADMET analysis was performed using SwissADME and ProTox-II. Notably, apoatropine, hyoscyamine, and 3â,6â-ditigloyloxytropane from D. stramonium exhibited stronger α4β2 nAChR binding effects, compared to nicotine, and had CB1 binding affinities similar to THC. Among these high-affinity binding compounds, apoatropine maintained the most stable and compact structural conformation, relative to nicotine and THC. ADMET analysis indicated propitious physicochemical and drug-like properties for all plant-based alkaloids except N, α-L-rhamnopyranosyl vincosamide from M. oleifera and apoatropine, which were predicted to be carcinogenic. Additionally, over 50% of the plant-based alkaloids assessed are blood-brain barrier permeant, implying their propensity to mediate CNS effects. It is pertinent to regulate the use of these plants, particularly in tropical regions like Nigeria, where they are widely cultivated, consumed, and likely explored for recreational purposes based on their psychoactive effects.

Article Details

How to Cite
Bankole, H. A., Kanmodi, R. I., Kazeem, M. I., Wusu, A. D., Fatai, A. A., Oddiri, R. T., Boakye, A., & Oyedele, A.-Q. K. (2024). Interactive Properties of Alkaloids from Datura stramonium, Moringa oleifera, and Carica papaya with Human Receptor Proteins of Psychoactive Compounds from Cannabis sativa and Nicotiana tabacum. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7880-7890. https://doi.org/10.26538/tjnpr/v8i7.35
Section
Articles
Author Biography

Rahmon I. Kanmodi, Department of Biochemistry, Faculty of Science, Lagos State University, Lagos, Nigeria

Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States

References

Simão AY, Antunes M, Cabral E, Oliveira P, Rosendo LM, Brinca AT, Alves E, Marques H, Rosado T, Passarinha LA. An update on the implications of new psychoactive substances in public health. Int J. Environ Res Public Health. 2022; 19(8):4869.

Wolfe D, Corace K, Butler C, Rice D, Skidmore B, Patel Y, Thayaparan P, Michaud A, Hamel C, Smith A. Impacts of medical and non-medical cannabis on the health of older adults: Findings from a scoping review of the literature. Plos one. 2023; 18(2):e0281826.

Fasakin OW, Oboh G, Ademosun AO. The prevalence, mechanism of action, and toxicity of Nigerian psychoactive plants. Comp. Clin. Path. 2022; 31(5):853-873.

Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem. Soc. Rev. 2021; 50(12):6950-7008.

Khalsa JH, Bunt G, Blum K, Maggirwar SB, Galanter M, Potenza MN. Cannabinoids as medicinals. Curr. Addict. Rep. 2022; 9(4):630-646.

Rehan HS, Maini J, Hungin AP. Vaping versus smoking: a quest for efficacy and safety of E-cigarette. Curr. Drug Saf. 2018; 13(2):92-101.

McDonagh MS, Morasco BJ, Wagner J, Ahmed AY, Fu R, Kansagara D, Chou R. Cannabis-based products for chronic pain: a systematic review. Ann. Intern. Med. 2022; 175(8):1143-1153.

Viana MdB, Aquino PEAd, Estadella D, Ribeiro DA, Viana GSdB. Cannabis sativa and Cannabidiol: A Therapeutic Strategy for the Treatment of Neurodegenerative Diseases? Med. Cannabis Cannabinoids. 2022; 5(1):207-219.

Cooper SY, Akers AT, Journigan VB, Henderson BJ. Novel putative positive modulators of α4β2 nAChRs potentiate nicotine reward-related behavior. Molecules. 2021; 26(16):4793.

Wei T-T, Chandy M, Nishiga M, Zhang A, Kumar KK, Thomas D, Manhas A, Rhee S, Justesen JM, Chen IY. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell. 2022; 185(10):1676-1693.

Carstens E, Carstens MI. Sensory effects of nicotine and tobacco. Nicotine Tob. Res. 2022; 24(3):306-315.

Hoch E, Bonnet U, Thomasius R, Ganzer F, Havemann-Reinecke U, Preuss UW. Risks associated with the non-medicinal use of cannabis. Dtsch. Ärztebl. Int. 2015; 112(16):271.

Mura P, Underner M, Brunet B. Cannabis: similarities and differences with tobacco. Rev. Mal. Respir. 2020; 37(6):479-447.

Kitchen C, Kabba JA, Fang Y. Status and impacts of recreational and medicinal cannabis policies in Africa: A systematic review and thematic analysis of published and “Gray” literature. Cannabis Cannabinoid Res. 2022; 7(3):239-261.

Otu SE. The "War on drugs" in Nigeria: How effective and beneficial is it in dealing with the problem? Afr. J. Drug Alcohol Stud. 2013; 12(2):119-135

Bridge J, Loglo M-G. Drug laws in West Africa: A review and summary. Int. Drug Policy Consortium West Afr. Comm. Drugs. 2017.

Oladepo O, Oluwasanu M, Abiona O. Analysis of tobacco control policies in Nigeria: historical development and application of multi-sectoral action. BMC Public Health. 2018; 18(1):1-12.

Chung EY, Cha HJ, Min HK, Yun J. Pharmacology and adverse effects of new psychoactive substances: synthetic cannabinoid receptor agonists. Arch. Pharm. Res. 2021; 44:402-413.

World Health Organization. WHO report on the global tobacco epidemic, 2021: addressing new and emerging products. World Health Organ. 2021.

Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016; 6(2):147-172.

Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021; 137:104851.

Santos LH, Ferreira RS, Caffarena ER. Integrating molecular docking and molecular dynamics simulations. Docking Screens Drug Discov. 2019; 13-34.

Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov. 2020; 15(12):1473-1487.

Singh S, Singh DB, Gautam B, Singh A, Yadav N. Pharmacokinetics and pharmacodynamics analysis of drug candidates. Bioinformatics: Elsevier; 2022. 305-316 p.

Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016; gkw1000.

Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018; 46(W1):W363-W367

Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006; 25(2):247-260.

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA. PubChem substance and compound databases. Nucleic Acids Res. 2016; 44(D1):D1202-D1213.

Borquaye LS, Gasu EN, Ampomah GB, Kyei LK, Amarh MA, Mensah CN, Nartey D, Commodore M, Adomako AK, 29.Acheampong P. Alkaloids from Cryptolepis sanguinolenta as potential inhibitors of SARS‐CoV‐2 viral proteins: An in silico study. Biomed Res. Int. 2020; 2020(1):5324560.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010; 31(2):455-461.

Kutzner C, Kniep C, Cherian A, Nordstrom L, Grubmüller H, de Groot BL, Gapsys V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model. 2022; 62(7):1691-1711.

Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A. 2001; 105(43):9954-9960.

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem. 2010; 31(4):671-690.

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012; 4(1):17.

Berendsen HJ, Postma Jv, Van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81(8):3684-3690.

Ogunlana AT, Boyenle ID, Ojo TO, Quadri BO, Elegbeleye OE, Ogbonna HN, Ayoola SO, Badmus IO, Manica AK, Joshua KI. Structure-based computational design of novel covalent binders for the treatment of sickle cell disease. J. Mol. Graph. Model. 2023; 124:108549.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017; 7(1):42717.

Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46(W1).

Adelusi TI, Oyedele A-QK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Idris MO, Olaoba OT, Adedotun IO, Kolawole OE. Molecular modeling in drug discovery. Inform. Med. Unlocked. 2022; 29:100880.

Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes. 2020; 9(1):71.

Shagal M, Modibbo U, Liman A. Pharmacological justification for the ethnomedical use of Datura stramonium stem-bark extract in treatment of diseases caused by some pathogenic bacteria. Int Res Pharm Pharmaco. 2012; 2(1):16-19.

Oseni O, Olarinoye C, Amoo I. Studies on chemical compositions and functional properties of thorn apple (Datura stramonium L) Solanaceae. Afr J Food Sci. 2011; 5(2):40-44.

Umamaheswari M, Aji C, Asokkumar K, Sivashanmugam T, Subhadradevi V, Jagannath P, Madeswaran A. Docking studies: In silico aldose reductase inhibitory activity of commercially available flavonoids. Bangladesh J Pharmacol. 2012; 7(2):108-113.

Sharma A, Sharma R, Sharma M, Kumar M, Barbhai MD, Lorenzo JM, Sharma S, Samota MK, Atanassova M, Caruso G. Carica papaya L. leaves: Deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell

Longev. 2022; 2022(1):5594781.

Wadekar AB, Nimbalwar MG, Panchale WA, Gudalwar BR, Manwar JV, Bakal RL. Morphology, phytochemistry and pharmacological aspects of Carica papaya, a review. GSC Biol Pharm Sci. 2021; 14(3):234-248.

Julianti T, Oufir M, Hamburger M. Quantification of the antiplasmodial alkaloid carpaine in papaya (Carica papaya) leaves. Planta Med. 2014; 80(13):1138-1142.

Gorane A, Naik A, Nikam T, Tripathi T, Ade A. GCMS analysis of phytocomponents of C. papaya variety red lady. J Pharmacogn Phytochem. 2018; 7(2):553-555.

Oyewole AL, Owoyele BV. Neurobehavioural effects of exposure of Wistar rats to smoke from traditional Carica papaya (pawpaw) leaves. CellMed. 2012; 2(4):36.1-.4.

Afzan A, Abdullah NR, Halim SZ, Rashid BA, Semail RHR, Abdullah N, Jantan I, Muhammad H, Ismail Z. Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats. Molecules. 2012; 17(4):4326-4342.

Ovando-Martínez M, González-Aguilar GA. Papaya. Nutritional composition and antioxidant properties of fruits and vegetables:

Elsevier; 2020. 499-513 p.

Saran P, Choudhary R. Drug bioavailability and traditional medicaments of commercially available papaya: A review. Afr J Agric Res. 2013; 8(25):3216-3223.

Hiraga Y, Ara T, Sato N, Akimoto N, Sugiyama K, Suzuki H, Kera K. Metabolic analysis of unripe papaya (Carica papaya L.) to promote its utilization as a functional food. Biosci Biotechnol Biochem. 2021; 85(5):1194-1204.

Lentz TL, Chaturvedi V, Conti-Fine BM. Amino acids within residues 181–200 of the nicotinic acetylcholine receptor α1 subunit involved in nicotine binding. Biochem Pharmacol. 1998; 55(3):341-347.

Delgado-Vélez M, Quesada O, Villalobos-Santos JC, Maldonado-Hernández R, Asmar-Rovira G, Stevens RC, Lasalde-Dominicci JA. Pursuing high-resolution structures of nicotinic acetylcholine receptors: lessons learned from five decades. Molecules. 2021; 26(19):5753.

Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA. Nicotine binding to brain receptors requires a strong cation–π interaction. Nature. 2009; 458(7237):534-537.

Naha A, Banerjee S, Debroy R, Basu S, Ashok G, Priyamvada P, Kumar H, Preethi A, Singh H, Anbarasu A. Network metrics, structural dynamics and density functional theory calculations identified a novel Ursodeoxycholic Acid derivative against therapeutic target Parkin for Parkinson's disease. Comput Struct Biotechnol J. 2022; 20:4271-4287.

Pantsar T, Poso A. Binding affinity via docking: fact and fiction. Molecules. 2018; 23(8):1899.

Nogueira MS, Koch O. The development of target-specific machine learning models as scoring functions for docking-based target prediction. J Chem Inf Model. 2019; 59(3):1238-1252.

Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y. ADMET-score–a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm. 2019; 10(1):148-157.

Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. J Comput Biol. 2020; 27(9):1397-1406.

Ibrahim ZYu, Uzairu A, Shallangwa G, Abechi S. Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1, 4, 5-trisubstituted 1, 2, 3-triazoles derivatives as elevators of p53 protein levels. Sci Afr. 2020; 10:e00570

Hai, NTT, Huong, DTQ, Hoang, NV, Bui, TQ, Quy, PT, Phu, NV, Chau, ND, Huy, TQ, Hue, DT, Nhung, NTA. Antibacterial Potentials of Blumea balsamiferal. Essential Oil Against Streptococcus pyogenes and Streptococcus 62.pneumoniae: In Vitro and In Silico Screening. Trop J Nat Prod Res. 2024; 8(6): 7590 –7602.

Al Dhaheri Y, Wali AF, Akbar I, Rasool S, Razmpoor M, Jabnoun S, Rashid S. Nigella sativa, a cure for every disease: Phytochemistry, biological activities, and clinical trials. Black Seeds (Nigella Sativa): Elsevier; 2022. 63-90 p.

Price G, Patel DA. Drug bioavailability. 2020. PMID: 32496732.

Poongavanam V, Haider N, Ecker GF. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg Med Chem. 2012; 20(18):5388-5395.

Shityakov S, Förster C. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Adv Appl Bioinform Chem. 2014; 7:1.

Rahayu S, Widyarti S, Soewondo A, Prasetyaningrum DI, Umarudin U. A Computational Insights of Ocimum basilicum Flavonoid and Essential Oils Interaction in the Targeting Keap1/SIRT1/NFKB Signaling Pathway. Trop J Nat Prod Res. 2024; 8(2):6182-6191.