Detection and Screening of Some Medicinal Plants Against Multiple Drug-Resistant Pseudomonas aeruginosa from Selected Sources
Main Article Content
Abstract
Multi-drug resistant (MDR) Pseudomonas aeruginosa strain continues to be a global health challenge due to the rise in their ability to produce extended-spectrum β-lactamase and AmpC β-Lactamas. In Nigeria, Heterotis rotundifolia (Sunflower), Chromolaena odorata (Awolowo leaf), and Helianthus annuus (Pink lady) have been used traditionally to treat P. aeruginosa-associated diseases. Still, their effectiveness has not been scientifically validated. This study investigated the prevalence and effect of crude extracts of these medicinal plants on MDR P. aeruginosa. A total of 500 samples (350 clinical, 100 animal and 50 environmental samples) were collected in Lagos State between January and June 2023. Samples were analysed microbiologically, and isolates were subjected to antibiotic susceptibility by standard methods. P. aeruginosa isolates were screened for AmpC and ESBL production using standard procedures. The plants were screened for their anti-P. aeruginosa activity and their phytochemical constituents. This study revealed a 2.4% overall prevalence of P. aeruginosa, with varying prevalence including 1.7% in clinical, 6% environmental, and 3% in animal samples. P. aeruginosa isolates were 100% resistant to ceftriaxone, augmentin, and colistin sulphate, 100% susceptible to imipenem and 83.3% AmpC producers. Both methanol and aqueous extracts of the three plants were effective against MDR P. aeruginosa strains at 100 mg/ml and 50 mg/ml concentrations. The existence of flavonoids, alkaloids, saponins, terpenoids, and other compounds at different concentrations was shown from the phytochemical screening. Higher effectivity of H. rotundifolia aqueous extract was detected against AmpC-producing strains. Molecular, phyto-kinetic and toxicological analyses of AmpC-producing P. aeruginosa should be carried out to ascertain the basis of the effectiveness of H. rotundifolia.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
WHO World Health Organization. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-ofbacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 30 September 2023).
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MG, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41(5):698-722.
Niccodem EM, Mwingwa A, Shangali A, Manyahi J, Msafiri F, Matee M, Majigo M, Joachim A. The predominance of multidrug-resistant bacteria causing urinary tract infections among men with prostate enlargement attending a tertiary hospital in Dar es Salaam, Tanzania. Bull Natl Res Cent. 2023;47(1):54.
Gonzalez L, Cravoisy A, Barraud D, Conrad M, Nace L, Lemarié J, Bollaert PE, Gibot S. Factors influencing the implementation of antibiotic de-escalation and the impact of this strategy in critically ill patients. Crit Care. 2013;17(4):1-8.
Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, Skariah S. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. mSphere. 2021;6(3):e00202-21.
Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin. Exp. Optom. 2018;101(2):162-71.
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):10.1128/cmr. 00031-19.
Ghazaei C. Molecular Analysis of Pathogenic Genes (lasB and exoA) in Pseudomonas aeruginosa Strains Isolated from Animal and Human Samples and Determination of Their Resistance Pattern. J Clin Res Paramed Sci. 2021;10(2):1-13.
Rocha AJ, Barsottini MR, Rocha RR, Laurindo MV, Moraes FL, Rocha SL. Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Braz Arch Biol Technol. 2019;62.
Odumosu BT, Adeniyi BA, Chandra R. Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosa from Southwest Nigeria. Ann Clin Microbiol. 2013;12(1):1-7.
Owusu E, Ahorlu MM, Afutu E, Akumwena A, Asare GA. Antimicrobial activity of selected medicinal plants from a Sub-Saharan African country against bacterial pathogens from post-operative wound infections. Med Sci. 2021;9(2):23-48.
Attah F, Abalaka M, Adobu U, Mamman G, Apeh TA. Review Of All-Inclusive Therapeutic Potency of Pure Honey: A New Hope for Antibiotics Alternative. Eur J Pharm Med Res. 2021,8(1):18-25.
McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 2001;25(3):285-308.
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017:1227-49.
Palma E, Tilocca B, Roncada P. Antimicrobial resistance in veterinary medicine: An overview. Int J Mol Sci. 2020;21(6):1914.
Duan C, Cao H, Zhang L-H, Xu Z. Harnessing the CRISPR-Cas systems to combat antimicrobial resistance. Front Microbiol. 2021;12:716064.
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RA, Sylvia N. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiot. 2022;11(2):200.
Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 2012;7(8):979-90.
zeador C, Ejikeugwu P, Ushie S, Agbakoba N. Isolation, identification and prevalence of Pseudomonas aeruginosa isolates from clinical and environmental sources in Onitsha Metropolis, Anambra State. Euro J Med Health Sci. 2020;2(2).
Roulová N, Mot’ková P, Brožková I, Pejchalová M. Antibiotic resistance of Pseudomonas aeruginosa isolated from hospital wastewater in the Czech Republic. J Water Health. 2022;20(4):692-701.
Chika E, Carissa D, Benigna O, Peter E, Blessing O, Nkemdilim E, Happiness A, Chijioke E. Bacteriological Investigation of Antibiogram, Multiple Antibiotic Resistance Index and Detection of Metallo-Β-Lactamase (MBL) in Klebsiella species and Pseudomonas aeruginosa of Abattoir Origin. Clin Biotechnol Microbiol. 2018;2:35-60.
Yang S-K, Tan N-P, Chong C-W, Abushelaibi A, Lim S-H-E, Lai K-S. The missing piece: Recent approaches investigating essential oils’ antimicrobial mode of action. Evol Bioinform. 2021;17:1176934320938391.
Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12):10.1128/jcm. 00213-21.
El Aila NA, Al Laham NA, Ayesh BM. Prevalence of extended-spectrum beta-lactamase and molecular detection of blaTEM, blaSHV and blaCTX-M genotypes among Gram-negative bacilli isolates from the pediatric patient population in Gaza strip. BMC Infect Dis. 2023;23(1):1-10.
Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol. 2005;43(7):3110-3.
Manousi N, Sarakatsianos I, Samanidou V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. Engineering tools in the beverage industry, Woodhead. 2019; 283-314.
Agyare C, Koffuor GA, Boakye YD, Mensah KB. Antimicrobial and anti-inflammatory properties of Funtumia elastica. Pharm Biol. 2013;51(4):418-25.
Obadoni B, Ochuko P. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. J Pur Appl Sci. 2002;8(2):203-8.
Ugbaja CC, Fawibe OO, Oyelakin AS, Fadimu IO, Ajiboye AA, Agboola DA. Comparative phytochemical and nutritional composition of trichosanthes cucumerina (L.) and some Solanum lycopersicum (L.) cultivars in Nigeria. Am J Plant Sci. 2017;8(02):297.
Ugwoke C, Orji J, Anze S, Ilodibia C. Quantitative phytochemical analysis and antimicrobial potential of the ethanol and aqueous extracts of the leaf, stem and root of Chromolaena odorata (Asteraceae). Int J Pharmacogn Pharm Res. 2017;9(2):207-14.
Akinyemi KO, Fakorede CO, Iwalokun BA, Oyefolu AO. Activities of Three Nigerian Medicinal Plants against Plasmid-Carrying Enteric Bacterial Pathogens”. EC Microbiol. 2017;5:10-21.
Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiot. 2021;10(1):42.
Odumosu BT, Ajetunmobi O, Dada-Adegbola H, Odutayo I. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human, animal and plant sources. SpringerPlus. 2016;5(1):1-7.
Singh V, Kumar A, Yadav S. Prevalence and Antibiogram of Pseudomonas aeruginosa Isolates in Clinical Samples of Companion Animals. Indian J Comp Microbiol Immunol Infect Dis. 2017;38(1):37-42.
Adesoji AT, Onuh JP, Palang IP, Liadi AM, Musa S. Prevalence of multi-drug resistant Pseudomonas aeruginosa isolated from selected residential sewages in Dutsin-Ma, Katsina State, Nigeria. J public health Afr. 2023;14(2).
Pondei K, Fente BG, Oladapo O. Current microbial isolates from wound swabs, their culture and sensitivity pattern at the Niger delta university teaching hospital, Okolobiri, Nigeria. Trop Med Int Health. 2013;41(2):49-53.
Isichei-Ukah O, Enabulele O. Prevalence and antimicrobial resistance of Pseudomonas aeruginosa recovered from environmental and clinical sources in Benin City, Nigeria. Ife J Sci. 2018;20(3):547-55.
Awanye AM, Ibezim CN, Stanley CN, Hannah O, Okonko IO, Egbe NE. Multidrug-resistant and extremely drug-resistant Pseudomonas aeruginosa in clinical samples from a tertiary healthcare facility in Nigeria. Turk J Pharm Sci. 2022;19(4):447.
Oliveira LG, Ferreira LG, Nascimento AM, Reis MD, Dias MF, Lima WG, Paiva MC. Antibiotic resistance profile and occurrence of AmpC between Pseudomonas aeruginosa isolated from a domestic full-scale WWTP in southeast Brazil. Water Sci Technol. 2017(1):108-14.
Ojo SK, Udewena LU, Durodola OT, Olarinoye OO, Ariyo OO, Herbert SJ, Lawal AM. Antibacterial Activity of Bryophyllum pinnatum and Rauvolfia vomitoria on Neonatal Group B Streptococcus. Trop J Nat Prod Res. 2024;8(2): 10.26538/tjnpr/v8i2.39.
Dougnon VT, Klotoé J, Sènou M, Roko G, Dougnon G, Fabiyi K, Amadou A, Aniambossou A, Assogba P, Bankolé HO, Dougnon J. Chemical composition, cytotoxicity and antibacterial activity of selected extracts of Euphorbia hirta, Citrus aurantifolia and Heterotis rotundifolia on enteropathogenic bacteria. EC Microbiol. 2017;12(4):180-95.
Mahamba C, Palamuleni LG. Antimicrobial activity of sunflower (Helianthus annuus) seed for household domestic water treatment in Buhera District, Zimbabwe. Int J Environ Res Public Health. 2022;19(9):54-62.
Omeke PO, Obi JO, Orabueze NI, Ike AC. Antibacterial activity of leaf extract of Chromolaena odorata and the effect of its combination with some conventional antibiotics on Pseudomonas aeruginosa isolated from wounds. J Appl Biol 2019;7(3):36-40.
Adewumi AM, Olusola-Makinde O, Kolawole OM. Evaluation of phytochemical constituents and antibacterial activity of Chromolaena odorata L. leaf extract against selected multidrug-resistant bacteria isolated from wounds. South Asian J Res Microbiol. 2020;5(3):1-9.
Abubakar M, Etonihu A, Kigbu P, Owuna J, Audu S. Phytochemical and antimicrobial analyses of leaf extracts of Cerathoteca sesamoides and Chromolaena odorata. Int J Res Granthaalayah. 2020;8(8):65-74.
Hridhya K, Kulandhaivel M. Antimicrobial activity of Chromolaena odorata against selected pyogenic pathogens. Int J Pharmacog Phytochem Res. 2017;9(7):1001-7.
Odutayo F, Ezeamagu C, Kabiawu T, Aina D, Mensah-Agyei G. Phytochemical screening and antimicrobial activity of Chromolaena odorata leaf extract against selected microorganisms. J Adv Med Pharm. 2017;13(4):1-9.
Hossain MR, Biplob AI, Sharif SR, Bhuiya AM, Sayem AS. Antibacterial Activity of Green Synthesized Silver Nanoparticles of Lablab purpureus Flowers Extract against Human Pathogenic Bacteria. Trop J Nat Prod Res. 2023; 7(8):1-7.