Nutritional, Phytochemical and Therapeutic Attributes of Edible Wild Mushrooms as Influenced By Substrates In Humid Tropical Environment
Main Article Content
Abstract
Edible wild mushrooms (EWM) help low-income families maintain their food security and nutrition. Information on the nutritional and phytochemical compositions of EWM is needed due to their contribution to food security, nutrition and therapeutic values to millions of people in Africa and Asia. The objective of this study was to assess the proximate, mineral, vitamin, and phytochemical compositions of therapeutic importance in edible wild mushrooms. Seven EWM species were gathered, identified, and analyzed for physical, nutritional, and phytochemical composition. The data were statistically analysed. The EWMs' proximate, mineral, vitamin and phytochemical contents varied significantly. Protein concentrations ranged from 3% to 19.48%. The ranges for fibre, ash, and carbohydrate were 0.83-5.25%, 1.77–12.25%, and 1.42–9.08%, respectively. K, Na, and P were the most abundant minerals in this study, followed by Mg and Ca. Vitamin A was the most abundant vitamin in the wild mushrooms studied, followed by vitamin C and vitamin E. Phenols, alkaloids, flavonoids, tannins, and saponin were also found in the EWM. The mean performance and stability analysis indicated that Termitomyces le-testui ranked higher than the population mean in mineral, vitamins and phytochemical compositions. Ganoderma lucidum was the least ranked mushroom for mineral, vitamins and phytochemical compositions. The results of this study can aid dieticians, nutritionists and pharmacists in identifying mushrooms with high nutritional and therapeutic values while foraging in the wild. Exploring these differences in mushroom content will be helpful in the pharmaceutical industry, in clinical settings for human therapeutic applications, and in reducing hidden hunger.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
FAO. Sustainable Forest Management: Forests, food security and nutrition. 2017. http://www.fao.org/sustainable-forest-management/toolbox/modules/forests-food-security-and-nutrition/basic-knowledge/en/
Jo W-S, Hossain MA, Park SC. Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiol. 2014; 42:215-220. doi:10.5941/MYCO.2014.42.3.215.
Wendiro D, Wacoo AP, Wise G. Identifying indigenous practices for cultivation of wild saprophytic mushrooms: responding to the need for sustainable utilization of natural resources. J. Ethnobiol. Ethnomed. 2019; 15:64. doi:10.1186/s13002-019-0342-z.
Okhuoya J, Akpaja E, Osemwegie O, Oghenekaro A, Ihayere C. Nigerian mushrooms: underutilized non-wood forest resources. J. Applied Sci. Envir. Manag. 2010; 14:43-54. doi:10.4314/jasem.v14i1.56488.
Ramos M, Burgos N, Barnard A, Evans G, Preece J, Graz M, Ruthes AC, Jiménez-Quero A, Martínez-Abad A, Vilaplana F. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019; 292:176-187. doi:10.1016/j.foodchem.2019.04.035.
Okhuoya JAO. Edible Mushrooms: As Functional Foods and Nutriceuticals. Trop. J. of Nat. Prod. Res. 2017; 1:186–187. doi:10.26538/tjnpr/v1i5.1.
Hetland G, Tangen JM, Mahmood F, Mirlashari MR, Nissen-Meyer LSH, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E. Antitumor, Anti-Inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutr. 2020; 12. doi:10.3390/nu12051339.
Sinanoglou VJ, Zoumpoulakis P, Heropoulos G, Proestos C, Ćirić A, Petrovic J, Glamoclija J, Sokovic M. Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties. J. Food Sci. Technol. 2015; 52:3264-3272. doi:10.1007/s13197-014-1377-8.
Kakon A, Choudhury M, Saha S. Mushroom is an Ideal Food Supplement. J. of Dhaka Nat. Med. College & Hospit. 2012; 8:58-62. doi:10.3329/jdnmch.v18i1.12243.
Murugesan S. Sustainable Food Security: Edible and Medicinal Mushroom. In Sustainable Agriculture towards Food Security, A., D., Ed.; Springer: Singapore, 2017.
Dávila GL, Murillo AW, Zambrano FC, Suárez MH, Méndez AJ. Evaluation of nutritional values of wild mushrooms and spent substrate of Lentinus crinitus (L.) Fr. Heliyon 2020; 6:e03502. doi:10.1016/j.heliyon.2020.e03502.
Ong HG, Kim YD. The role of wild edible plants in household food security among transitioning hunter-gatherers: evidence from the Philippines. Food Sec. 2017; 9:11-24. doi:10.1007/s12571-016-0630-6.
Hsieh HM, Chung MC, Chen PY, Hsu FM, Liao WW, Sung AN, Lin CR, Wang CJR, Kao YH, Fang MJ. A termite symbiotic mushroom maximizing sexual activity at growing tips of vegetative hyphae. Bot. Stud. 2017; 58:39-39. doi:10.1186/s40529-017-0191-9.
van Huis A, Oonincx DGAB. The environmental sustainability of insects as food and feed. A review. Agron. for Sust. Dev. 2017; 37:43. doi:10.1007/s13593-017-0452-8.
Chukwudi UP, Agbo CU, Echezona BC, Eze EI, Kutu FR, Mavengahama S. Variability in morphological, yield and nutritional attributes of ginger (Zingiber officinale) germplasm in Nigeria. Res. on Crops 2020; 21:634-642. doi:10.31830/2348-7542.2020.099.
Nnorom IC, Eze SO, Ukaogo, PO. Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: An evaluation of bioaccumulation potentials and dietary intake risks. Sci. Afr. 2020; 8:e00163. doi:10.1016/j.sciaf.2019.e00163.
Degreef J, Demuynck L, Mukandera A, Nyirandayambaje G, Nzigidahera B, De Kesel A. Wild edible mushrooms, a valuable resource for food security and rural development in Burundi and Rwanda. BASE [Online] 2016; 20:441-452.
Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the Fungi; CAB International: Wallingford, UK, 2008.
AOAC. Association of Official Analytical Chemists.Official methods of analysis; Washington D. C., 2005.
Onwuka GI. Food Analysis and Instrumentation: Theory and Practice; Napthali Prints: 2005.
Madhu M, Sailaja V, Satyadev TNVSS, Satyanarayana M. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. J. Pharma. Phytochem. 2016; 5.
Ijimbili SB, Adenipekun, OC. Comparative study on growth parameters, proximate analysis and mineral composition of Ganoderma lucidum cultivated on different substrates. Adv. in Food Sci. 2022; 44:5-14.
Vilas PM, Jadhav AC, Dhavale MC, Hasabnis SN, Gaikwad AP, Jadhav PR, Ajit PS. Effect of cultural variability on mycellial growth of eleven mushroom isolates of Pleurotus spp. J. Pharma. Phytochem. 2020; 9:881-888.
Atri NS, Kaur M, Sharma S. Characterization of lamellate mushrooms—an appraisal. Dev. in Fungal Biol. Applied Mycol. 2017; 471-500.
Kalogeropoulos N, Yanni AE, Koutrotsios G, Aloupi A. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food and Chem. Toxicol. 2013; 55:378-385. doi:10.1016/j.fct.2013.01.010.
Ayodelea SM, Okhuoya JA. Nutritional and phytochemical evaluation of cultivated Psathyrella atroumbonata Pegler, a Nigerian edible mushroom. South Afr. J. Sci. 2009; 105:158-160.
Reis F, Barros SL, Martins A, Ferreira ICFR. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012; 50:191-197. doi:10.1016/j.fct.2011.10.056.
Guillamón E, García-Lafuente A, Lozano M, D´Arrigo M, Rostagno MA, Villares A, Martínez JA. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia. 2010; 81:715-723. doi:10.1016/j.fitote.2010.06.005.
Gebhardt SE, Thomas RG. Nutritive value of foods. US Department of Agriculture, Agri. Res. Ser. 2002.
Teke AN, Bi ME, Ndam LM, Kinge TR. Nutrient and mineral components of wild edible mushrooms from the Kilum-Ijim forest, Cameroon. Afr J. Food Sci. 2021; 15:152-161. doi:10.5897/AJFS2021.2089.
Dimelu IN, Eze EI, Chukwuone AA, Ndubuaku UM. Assessment of nutritional qualities and acceptability of breads produced with Moringa oleifera pod floor. Internat. J. Adv. Res. 2019; 7:49-55. doi:10.21474/IJAR01/9973.
Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, Vahteristo J. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001; 49:2343–2348.
Manzi P, Gambelli L, Marconi S, Vivanti V, Pizzoferrato L. Nutrients in edible mushrooms: an inter-species comparative study. Food Chem. 1999; 65:477-482. doi:10.1016/S0308-8146(98)00212-X.
Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium Intake and Hypertension. Nutrients. 2019; 11. doi:10.3390/nu11091970.
Afiukwa CA, Ugwu OP, Okoli SO, Idenyi JN, Ossai EC. Contents of Some Vitamins in Five Edible Mushroom Varieties Consumed in Abakaliki Metropolis, Nigeria. Res. J. Pharm. Bio. Chem. Sci. 2013; 4:805-812.
Wiseman EM, Bar-El Dadon S, Reifen R. The vicious cycle of vitamin a deficiency: A review. Crit. Reviews in Food Sci. Nutri. 2017; 57:3703-3714. doi:10.1080/10408398.2016.1160362.
Miller M, Humphrey J, Johnson E, Marinda E, Brookmeyer R, Katz J. Why do children become vitamin A deficient? J Nutr 2002;132:2867s-2880s. doi:10.1093/jn/132.9.2867S.
Siwulski M, Rzymski P, Budka A, Kalač P, Budzyńska S, Dawidowicz L, Hajduk E, Kozak L, Budzulak J, Sobieralski K. The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. Euro Food Res. Technol. 2019; 245:419-431. doi:10.1007/s00217-018-3174-5.
Adebiyi AO. Phytochemical screening and anti-nutrient profile of an edible mushroom, Termitomyces robustus (Beeli) R. Heim in Kwara State, Nigeria. New York Sci. J. 2018; 11:64-68. doi:10.7537/marsnys110418.09.
Ogbomida ET, Omofonmwan K, Aganmwonyi I, Fasipe IP, Enuneku A, Ezemonye LIN. Bioactive profiling and therapeutic potential of mushroom (Pleurotus tuberregium) extract on Wistar albino rats (Ratus norvegicus) exposed to arsenic and chromium toxicity. Toxicol. Reports 2018; 5:401-410. doi:10.1016/j.toxrep.2018.03.004.
Briguglio M, Hrelia S, Malaguti M, Serpe L, Canaparo R, Dell’Osso B, Galentino R, De Michele S, Zanaboni Dina C, Porta M. Food bioactive compounds and their interference in drug pharmacokinetic/ pharmacodynamic profiles. Pharmaceutics. 2018; 10:277.
Adejoke HT, Louis H, Amusan OO, Apebende G. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid. J. Med. Chem. Sci. 2019; 2:130-139.
Eze EI, Orjioke C. Phytochemical and antimicrobial activities of Physcia grisea on clinical isolate of Salmonella typhi. J. Med. Applied Biosci. 2010; 2:93-98.
Chen C, Lin L. Alkaloids in diet; 2019.
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant Flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022; 383:132531.
Yadav A, Kumari R, Yadav A, Mishra JP, Srivatva S, Prabha S. Antioxidants and its functions in human body-A Review. Res. Environ. Life Sci 2016; 9:1328-1331.
Uddin PMM, Sayful Islam M, Pervin R, Dutta S, Islam Talukder RJ, Soma N, Rahman M. Enzyme Inhibitory and Antioxidant Activity of Combination of Two Edible Mushrooms of Ganoderma lucidum and Pleurotus ostreatus. Trop. J. of Nat. Prod. Res. 2018; 2:314–319, doi:10.26538/tjnpr/v2i7.3.