Antioxidant Activity and Cardioprotective Potential of a Nanoemulsion Mix of Rosmarinus officinalis and Centella asiatica in Gestational Diabetes Mellitus Zebrafish Larvae Model

Authors

  • Husnul Khotimah Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Devi M. Arista Faculty of Medicine, Universitas Negeri Surabaya, Indonesia.
  • Rizki Amelia Poltekkes Kemenkes Kalimantan Timur, Indonesia.
  • Safrina D. Ratnaningrum Department of Anatomy Histology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
  • Yahya Irwanto Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i7.18

Keywords:

Tyrosine hydroxylase, Sirtuin 1, Superoxide dismutase, Nuclear factor erythroid 2-related factor 2a, Phosphoenolpyruvate carboxykinase, Gestational diabetes mellitus

Abstract

Hyperglycemia affects approximately 16.7% of pregnancies worldwide, with gestational
diabetes mellitus (GDM) accounting for nearly 84% of these cases. GDM, characterized
by glucose intolerance during pregnancy, presents significant health risks. Rosmarinus
officinalis (RO) and Centella asiatica (CA) are known for their antidiabetic and
antioxidant properties, including the ability to enhance insulin secretion and inhibit
phosphoenolpyruvate carboxykinase (PEPCK) expression in the gluconeogenesis pathway.
This study aims to assess the impact of a nanoemulsion of RO and CA combination (ROCA) on heart rate, superoxide dismutase (SOD), nuclear factor erythroid 2-related factor
2a (Nrf2a), sirtuin 1 (SIRT-1), and tyrosine hydroxylase (TH) expression in zebrafish
larvae model of GDM. GDM was induced by exposure of zebrafish embryo to a 3%
glucose solution in an embryonic medium. The GDM phenotype was confirmed by
elevated PEPCK expression as a hyperglycemia marker. GDM zebrafish was administered
RO-CA nanoemulsion at concentrations of 2.5, 5, and 10 µg/mL.from 2 hpf to 72 hpf.
Heart rate was monitored using stereoscopic imaging connected to a camera, while
expression levels of PEPCK, Nrf2a, SOD, SIRT-1, and TH were quantified using reverse
transcriptase polymerase chain reaction (RT-PCR). Results revealed a significant decrease
in PEPCK expression in the treatment groups compared to the glucose untreated group.
Notably, the nanoemulsion maintained heart rate frequency and upregulated Nrf2a, SOD,
SIRT-1, and TH expression, particularly at a concentration of 2.5 µg/mL. Overall, these
findings suggest that the RO-CA nanoemulsion exhibits enhanced antioxidant activity and
holds promise as a potential cardioprotective agent in GDM.

References

Woodside A and Bradford H. Exercise and the

Prevention of Gestational Diabetes Mellitus. Nurs

Womens Health. 2021; 25:304–311.

American Diabetes Association. Classification and

diagnosis of diabetes. Diabetes Care. 2017; 40:S11–24.

International Diabetes Federation. IDF Diabetes Atlas

th edition 2021. [Online]. 2021 [cited 2022 Dec

. Available from:

https://diabetesatlas.org/atlas/tenth-edition/

Wang C and Yang H. Diagnosis, prevention and

management of gestational diabetes mellitus.

Chronic Dis Transl Med. 2016;

:199–203.

Johns EC, Denison FC, Norman JE, Reynolds RM.

Gestational Diabetes Mellitus: Mechanisms,

Treatment, and Complications. Trends Endocrinol

Metab. 2018; 29:743–754.

de Mendonça ELSS, Fragoso MBT, de Oliveira JM,

Xavier JA, Goulart MOF, de Oliveira ACM.

Gestational Diabetes Mellitus: The Crosslink among

Inflammation, Nitroxidative Stress, Intestinal

Microbiota and Alternative Therapies. Antioxid.

; 11(1):129.

Tozour J, Hughes F, Carrier A, Vieau D, Delahaye F.

Prenatal hyperglycemia exposure and cellular stress, a

sugar-coated view of early programming of metabolic

diseases. Biomolecules. 2020; 10:1–17.

Topcuoglu S, Karatekin G, Yavuz T, Arman D, Kaya

A, Gursoy T, Ovali F. The relationship between the

oxidative stress and the cardiac hypertrophy in infants

of diabetic mothers. Diabetes Res Clin Pract. 2015;

:104–109.

Samanth J, Padmakumar R, Vasudeva A, Lewis L,

Nayak K, Nayak V. Persistent subclinical myocardial

dysfunction among infants of diabetic mothers. J

Diabetes Complications. 2022; 36(1):108079.

Wu Y, Liu B, Sun Y, Du Y, Santillan MK, Santillan

DA, Snetselaar LG, Bao W. Association of maternal

prepregnancy diabetes and gestational diabetes

mellitus with congenital anomalies of the newborn.

Diabetes Care. 2020; 43:2983–2990.

Al-Biltagi M, El razaky O, El Amrousy D. Cardiac

changes in infants of diabetic mothers. World J

Diabetes. 2021; 12:1233–1247.

Giribabu N, Karim K, Kilari EK, Nelli SR, Salleh N.

Oral administration of Centella asiatica (L.) Urb leave

aqueous extract ameliorates cerebral oxidative stress,

inflammation, and apoptosis in male rats with type-2

diabetes. Inflammopharm. 2020; 28:1599–1622.

Khotimah H, Alita SNP, Anindhita D, Weningtyas A,

Prima WE, Kalsum U, Rahayu M, Handayani D,

Nandar SK. Ethanolic extract of Salacca zalacca peel

reduce IL-1β and apoptosis in high glucose induced

zebrafish embryo. GSC Bio Pharm Sci. 2021;

:024–33.

Alqudah A, Eastwood KA, Jerotic D, Todd N, Hoch

D, McNally R, Obradovic D, Dugalic S, Hunter AJ,

Holmes VA, McCance DR, Young IS, Watson CJ,

Robson T, Desoye G, Grieve DJ, McClements L.

FKBPL and SIRT-1 Are Downregulated by Diabetes

in Pregnancy Impacting on Angiogenesis and

Endothelial Function. Front Endocrinol (Lausanne).

; 12:650328.

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and

SIRT6 Signaling Pathways in Cardiovascular Disease

Protection. Antioxid Redox Signal. 2018; 28:711–

Mishra M, Duraisamy AJ, Kowluru RA. Sirt1: A

guardian of the development of diabetic retinopathy.

Diabetes. 2018; 67:745–754.

Grassam-Rowe A, Ou X, Lei M. Novel cardiac cell

subpopulations: Pnmt-derived cardiomyocytes. Open

Biol. 2020; 10(8):200095.

Habecker BA, Anderson ME, Birren SJ, Fukuda K,

Herring N, Hoover DB, Kanazawa H, Paterson DJ,

Ripplinger CM. Molecular and cellular

neurocardiology: development, and cellular and

molecular adaptations to heart disease. J Physiol.

; 594:3853–3875.

Nasri H, Shirzad H, Baradaran A, Rafieian-Kopaei M.

Antioxidant plants and diabetes mellitus. J Res Med

Sci. 2015; 20(5):491-502.

Whalen K and Taylor J. Gestational Diabetes

Mellitus. Endocrinology/Nephrology 2017. 7-26 p.

Alam S, Sarker MMR, Sultana TN, Chowdhury

MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez

EE, Khan SA, Mohamed IN. Antidiabetic

Phytochemicals From Medicinal Plants: Prospective

Candidates for New Drug Discovery and

Development. Front Endocrinol (Lausanne). 2022;

:800714.

Marella S and Tollamadugu NVKVP.

Nanotechnological approaches for the development of

herbal drugs in treatment of diabetes mellitus – a

critical review. IET Nanobiotechnol. 2018; 12:549–

Ngo YL, Lau CH, Chua LS. Review on rosmarinic

acid extraction, fractionation and its anti-diabetic

potential. Food Chem Toxicol. 2018; 121:687–700.

Shiravi A, Akbari A, Mohammadi Z, Khalilian MS,

Zeinalian A, Zeinalian M. Rosemary and its

protective potencies against COVID-19 and other

cytokine storm associated infections: A molecular

review. Med J Nutr Metab. 2021; 14:401–416.

Colica C, Renzo L Di, Aiello V, De Lorenzo A,

Abenavoli L. Rev Recent Clin. 2018.

Kompelly A, Kompelly S, Vasudha B, Narender B.

Rosmarinus officinalis L.: an update review of its

phytochemistry and biological activity. J Drug Deliv

Ther. 2019; 9:323–330.

Naseema A, Kovooru L, Behera AK, Kumar KPP,

Srivastava P. A critical review of synthesis

procedures, applications and future potential of

nanoemulsions. Adv Colloid Interface Sci. 2021;

:102318.

Bonifácio BV, Silva PB, Ramos MA, Negri KM,

Bauab TM, Chorilli M. Nanotechnology-based drug

delivery systems and herbal medicines: a review. Int J

Nanomedicine. 2014;9:1-15.

Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ,

Salam F. An update review on polyherbal

formulation: A global perspective. Sys Rev Pharm.

; 7:35–41.

Karole S, Shrivastava S, Thomas S, Soni B, Khan S,

Dubey J, Dubey SP, Khan N, Jain DK. Polyherbal

Formulation Concept for Synergic Action: A Review.

J Drug Deliv Ther. 2019; 9:453–466.

Ainurofiq A, Wiyono N, Warni R, Choiri S.

Assessment of the synergistic effect of a poly-herbals

combination on the antioxidant activity through a

statistical approach. F1000Res. 2022; 11:1327.

Moukette BM, Ama Moor VJ, Biapa Nya CP,

Nanfack P, Nzufo FT, Kenfack MA, Ngogang JY,

Pieme CA. Antioxidant and Synergistic Antidiabetic Activities of a Three-Plant Preparation Used in

Cameroon Folk Medicine. Int Sch Res Notices. 2017;

:1–7.

Hardianti M, Yuniarto A, Hasimun P. Review:

Zebrafish (Danio rerio) Sebagai Model Obesitas dan

Diabetes Melitus Tipe 2. J Sains Farm Klin. 2021;

:69.

Zakaria F, Ibrahim WN, Ismail IS, Ahmad H,

Manshoor N, Ismail N, Zainal Z, Shaari K.

LCMS/MS Metabolite Profiling and Analysis of

Acute Toxicity Effect of the Ethanolic Extract of

Centella asiatica on Zebrafish Model. Pertanika J Sci

Technol. 2019; 27:985–1003.

Jeevanandam J, Chan YS, Danquah MK. Zebrafish as

a model organism to study nanomaterial toxicity.

Emerging Sci J. 2019; 3:195–208.

Khotimah H, Prima WE, Weningtyas A, Aninditha D,

Alita SNP, Kalsum U, Nandar SK, Rahayu M,

Handayani D. Neuroprotective Activity and

Antioxidant Effect of Salacca zalacca Peel Ethanol

Extract on High Glucose Induced Zebrafish (Danio

rerio) Embryo. Trop J Nat Prod Res. 2022; 5:2079–

Cold Spring Harbor Laboratory. E3 medium (for

zebrafish embryos). [Online]. 2011 [cited 2022 Dec

. Available from:

https://cshprotocols.cshlp.org/content/2011/10/pdb.re

c66449

Heckler K and Kroll J. Zebrafish as a model for the

study of microvascular complications of diabetes and

their mechanisms. Int J Mol Sci. 2017; 18(9):2002.

Van De Venter M, Didloff J, Reddy S, Swanepoel B,

Govender S, Dambuza NS, Williams S, Koekemoer

TC, Venables L. Wild-type zebrafish (Danio rerio)

larvae as a vertebrate model for diabetes and

comorbidities: A review. Animals. 2021; 11:1–21.

Konecke N. Addition of glucose solutions to aquatic

environment of Danio rerio embryos in

concentrations of 4 mM to 14 mM increases heart rate

BPM for zebrafish exposed to elevated glucose levels.

[Online]. 2011 [cited 2022 Dec 12]. Available from:

https://bpb-usw2.wpmucdn.com/sites.uwm.edu/dist/8/202/files/201

/06/Konecke_paper_zf_2018-zrtrec.pdf

Riffiani R, Chen FC, Zhang W, Wada T, Shimomura

N, Yamaguchi T, Aimic T. Identification,

characterization and expression of A-mating type

genes in monokaryons and dikaryons of the edible

mushroom Mycoleptodonoides aitchisonii

(Bunaharitake). Mycosci. 2021; 62(2):106–114.

Reifenberger GC, Thomas BA, Rhodes DVL.

Comparison of DNA Extraction and Amplification

Techniques for Use with Engorged Hard-Bodied

Ticks. Microorganism. 2022; 10(6):1254.

Kim I, Seok SH, Lee H-Y. Development of a

Zebrafish Larvae Model for Diabetic Heart Failure

With Reduced Ejection Fraction. Korean Circ J. 2023;

:34.

Brearley MC, Daniel ZCTR, Loughna PT, Parr T,

Brameld JM. The phosphoenolpyruvate

carboxykinase (PEPCK) inhibitor, 3-

mercaptopicolinic acid (3- MPA), induces myogenic

differentiation in C2C12 cells. Sci Rep. 2020;

(1):22177.

Runtuwene J, Cheng KC, Asakawa A, Amitani H,

Amitani M, Morinaga A, Takimoto Y, Kairupan

BHR, Inui A. Rosmarinic acid ameliorates

hyperglycemia and insulin sensitivity in diabetic rats,

potentially by modulating the expression of PEPCK

and GLUT4. Drug Des Dev Ther. 2016; 10:2193–

Alkhalidy H, Moore W, Wang A, Luo J, McMillan

RP, Wang Y, Zhen W, Hulver MW, Liu D.

Kaempferol ameliorates hyperglycemia through

suppressing hepatic gluconeogenesis and enhancing

hepatic insulin sensitivity in diet-induced obese mice.

J Nutr Biochem. 2018; 58:90–101.

Mioc M, Prodea A, Racoviceanu R, Mioc A, Ghiulai

R, Milan A, Voicu M, Mardale G, Soica C. Recent

Advances Regarding the Molecular Mechanisms of

Triterpenic Acids: A Review (Part II). Int J Mol Sci.

; 23(14):7740.

Plows JF, Stanley JL, Baker PN, Reynolds CM,

Vickers MH. The pathophysiology of gestational

diabetes mellitus. Int J Mol Sci. 2018; 19(11):3342.

Wu J, Sun X, Jiang Z, Jiang J, Xu L, Tian A, Sun X,

Meng H, Li Y, Huang W, Jia Y, Wu H. Protective

role of NRF2 in macrovascular complications of

diabetes. J Cell Mol Med. 2020; 24:8903–8917.

Williams LM, Timme-Laragy AR, Goldstone JV,

McArthur AG, Stegeman JJ, Smolowitz RM, Hahn

ME. Developmental expression of the Nfe2-related

factor (Nrf) transcription factor family in the

zebrafish, Danio rerio. PLoS One. 2013;

(10):e79574.

Sant KE, Sinno PP, Jacobs HM, Timme-Laragy AR.

Nrf2a modulates the embryonic antioxidant response

to perfluorooctanesulfonic acid (PFOS) in the

zebrafish, Danio rerio. Aquat Toxicol.

; 198:92–102.

Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F.

Superoxide dismutase administration: A review of

proposed human uses. Molecules. 2021; 26(7):1844.

Cheng X, Chapple SJ, Patel B, Puszyk W, Sugden D,

Yin X, Mayr M, Siow RCM, Mann GE. Gestational

diabetes mellitus impairs nrf2-mediated adaptive

antioxidant defenses and redox signaling in fetal

endothelial cells in utero. Diabetes. 2013; 62:4088–

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M,

Kudo M, Gao M, Liu T. Therapeutic Potential of

Centella asiatica and Its Triterpenes: A Review. Front

Pharmacol. 2020; 11:568032.

Tebay LE, Robertson H, Durant ST, Vitale SR,

Penning TM, Dinkova-Kostova AT, Hayes JD.

Mechanisms of activation of the transcription factor

Nrf2 by redox stressors, nutrient cues, and energy

status and the pathways through which it attenuates

degenerative disease. Free Rad

Biol Med. 2015; 88:108–146.

Zolkepli H, Widodo RT, Mahmood S, Salim N,

Awang K, Ahmad N, Othman R. A Review on the

Delivery of Plant-Based Antidiabetic Agents Using

Nanocarriers: Current Status and Their Role in

Combatting Hyperglycaemia. Polymers (Basel). 2022;

(15):2991.

Panossian L, Fenik P, Zhu Y, Zhan G, McBurney

MW, Veasey S. SIRT1 regulation of wakefulness and

senescence-like phenotype in wake neurons. J

Neurosci. 2011; 31:4025–4036.

Ianni A, Yuan X, Bober E, Braun T. Sirtuins in the

Cardiovascular System: Potential Targets in Pediatric

Cardiology. Pediatr Cardiol. 2018; 39:983–992.

Bakovic M, Filipovic N, Ferhatovic Hamzic L, Kunac

N, Zdrilic E, Vitlov Uljevic M, Kostic S, Puljak L,

Vukojevic K. Changes in neurofilament 200 and

tyrosine hydroxylase expression in the cardiac

innervation of diabetic rats during aging. Cardiovasc

Pathol. 2018; 32:38–43.

Grisanti LA. Diabetes and Arrhythmias:

Pathophysiology, Mechanisms and Therapeutic

Outcomes. Front Physiol. 2018; 9:1669.

Rahbardar MG and Hosseinzadeh H. Therapeutic

effects of rosemary (Rosmarinus officinalis L.) and its

active constituents on nervous system disorders. Iran J

Basic Med Sci. 2020; 23:1100–1112.

Sun B, Hayashi M, Kudo M, Wu L, Qin L, Gao M,

Liu T. Madecassoside Inhibits Body Weight Gain via

Modulating SIRT1-AMPK Signaling Pathway and

Activating Genes Related to Thermogenesis. Front

Endocrinol (Lausanne). 2021; 12:627950.

Gopi M, Arambakkam Janardhanam V. Asiaticoside:

Attenuation of rotenone induced oxidative burden in a

rat model of hemiparkinsonism by maintaining the

phosphoinositide-mediated synaptic integrity.

Pharmacol Biochem Behav. 2017; 155:1–15.

Harwansh RK, Deshmukh R, Rahman MA.

Nanoemulsion: Promising nanocarrier system for

delivery of herbal bioactives. J Drug Deliv Sci

Technol. 2019; 51:224–233.

Downloads

Published

2024-08-01

How to Cite

Khotimah, H., Arista, D. M., Amelia, R., Ratnaningrum, S. D., & Irwanto, Y. (2024). Antioxidant Activity and Cardioprotective Potential of a Nanoemulsion Mix of Rosmarinus officinalis and Centella asiatica in Gestational Diabetes Mellitus Zebrafish Larvae Model. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7747–7754. https://doi.org/10.26538/tjnpr/v8i7.18