Effect of African Leaves (Vernonia amygdalina Delile) on the Development of T47D Breast Cancer Cells

Main Article Content

Moralita Chatri
Poppy A.Z. Hasibuan
Edy Meiyanto
Deddi P. Putra
Endah P. Septisetyani
Denny Satria
Syukur B. Waruwu

Abstract

Cancer is still a health problem in the world. The number of sufferers and deaths from cancer
continues to increase from year to year, especially breast cancer. Cancer treatment is often
associated with high toxicity and low selectivity, and the emergence of resistance to
chemotherapeutic agents is a serious problem. Therefore, the development of new anticancer
agents is a priority. This research provides information regarding the potential of the Vernonia
amygdaline Delile plant for the development of breast cancer. Several studies show that this
plant has the potential to be used as an anticancer agent. The research was conducted by
extracting and fractionating this plant's leaves and then assessing the cytotoxic effect on T47D
cell viability using Microtetrazolium. Next, cell cycle inhibition, apoptosis, p53 and Akt
protein expression were analyzed using flow cytometry techniques. The results showed that
the dichloromethane fraction had the highest yield. The dichloromethane fraction had the best
IC50 value, 76.72 ± 1.79 μg/mL. Able to inhibit the cell cycle in the G2/M phase, stimulate
apoptosis, increase p53 protein expression and inhibit Akt protein expression in T47D cells.
The dichloromethane fraction can potentially be developed in treating breast cancer
development.

Article Details

How to Cite
Chatri, M., Hasibuan, P. A., Meiyanto, E., Putra, D. P., Septisetyani, E. P., Satria, D., & Waruwu, S. B. (2024). Effect of African Leaves (Vernonia amygdalina Delile) on the Development of T47D Breast Cancer Cells. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7740-7746. https://doi.org/10.26538/tjnpr/v8i7.17
Section
Articles

References

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M,

Znaor A, F Bray. Cancer statistics for the year 2020: An

overview. Int J Cancer. 2021; 149:778–89. Doi:

1002/ijc.33588.

WHO (2024): News world cancer day

https://www.emro.who.int/media/news/world-cancer-day2024.html

Obafemi FA, Umahi-Ottah G. A review of global cancer

prevalence and therapy. J Cancer Res Treat Prev. 2023;

(3):128-147. Doi: 10.37191/Mapsci-JCRTP-1(3)-011

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics

CA Cancer J Clin. 2023; 73:17–48. Doi:

3322/caac.21763.

Hunter N, English S, Nguyen V, Vinayak S, Linden HM, Specht

JM, Gwin WR, Yung RL, Achkar MA. Experiences of patients

with metastatic breast cancer: A qualitative study. JCO Oncol

Pract. 2023; 19:346–346. Doi:

1200/OP.2023.19.11_suppl.346.

Guité-Verret A, Vachon M. The incurable metastatic breast

cancer experience through metaphors: the fight and the

unveiling. Int J Qual Stud Health Well-Being. 2021; 16. Doi:

1080/17482631.2021.1971597.

Tapia M, Hernando C, Martínez MT, Burgués O, TebarSánchez C, Lameirinhas A, A Ágreda-Roca, S Torres-Ruiz, I

Garrido-Cano, A Lluch, B Bermejo, P Eroles. Clinical impact of

new treatment strategies for HER2-positive metastatic breast

cancer patients with resistance to classical anti-her therapies.

Cancers (Basel). 2023; 15:4522. Doi:

3390/cancers15184522.

AlNowak J, Wambebe C, Mukonzo J, Katuura E. Cytotoxic

activity of combining molecular iodine and dihydroartemisinin

with methanolextracts of Carica papaya Linn and Vernonia

amygdalina Delile leaves against MCF-7 and MDA-MB-231

breast cancer cell lines. Trop J Nat Prod Res. 2021; 5(3):485-

Doi: 10.26538/tjnpr/v5i3.12

Koual M, Tomkiewicz C, Cano-Sancho G, Antignac J-P, Bats

A-S, Coumoul X. Environmental chemicals, breast cancer

progression and drug resistance. Environmental Health. 2020;

:117. Doi: 10.1186/s12940-020-00670-2.

Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Y Li.

Exosomes and breast cancer drug resistance. Cell death &

disease. 2020; 11:987. Doi: 10.1038/s41419-020-03189-z

Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted therapy

and mechanisms of drug resistance in breast cancer. Cancers

(Basel). 2023; 15:1320. Doi: 10.3390/cancers15041320.

Kang Y. Landscape of NcRNAs involved in drug resistance of

breast cancer. Clinical and Translational Oncology. 2023;

:1869–92. Doi: 10.1007/s12094-023-03189-3.

Singh NK, Yadav AK, Sirohi P, Rani M, Saraswat S, Singh MP,

Mani A, Srivastava S. Anticancer activity of herbal medicine:

mechanism of action. Anticancer plants: mechanisms and

molecular interactions. Springer Singapore. 2018; 165–96. Doi:

1007/978-981-10-8417-1_7.

Syahputra RA, Harahap U, Dalimunthe A, Pandapotan M, Satria

D. Protective effect of Vernonia amygdalina Delile against

doxorubicin-induced cardiotoxicity. Heliyon. 2021; 7:07434.

Doi: 10.1016/j.heliyon.2021.e07434.

Bihonegn T, Giday M, Yimer G, Animut A, Sisay M.

Antimalarial activity of hydromethanolic extract and its solvent

fractions of Vernonia amygdalina leaves in mice infected with

Plasmodium berghei. SAGE Open Med. 2019;

:205031211984976. Doi: 10.1177/2050312119849766.

Abosi AO, Raseroka BH. In vivo antimalarial activity of

Vernonia amygdalina. Br J Biomed Sci. 2003; 60:89–91. Doi:

1080/09674845.2003.11783680.

Nguyen TXT, Dang DL, Ngo VQ, Trinh TC, Trinh QN, Do TD,

Thanh TTT. Anti-inflammatory activity of a new compound

from Vernonia amygdalina. Natural Product Research. 2021;

:5160–5. Doi: 10.1080/14786419.2020.1788556.

Muhammad M, De Lux E, Satria D, Nasri. Variation of

extraction method of Vernonia amygdalina Delile leaves

ethanol extract as antibacterial against Streptococcus mutans

and Candida albicans. 2023; 030002. Doi: 10.1063/5.0136221.

Egedigwe CA, Ijeh II, Okafor PN, Ejike CECC. Aqueous and

methanol extracts of Vernonia amygdalina leaves exert their

anti-obesity effects through the modulation of appetiteregulatory hormones. Pharm Biol. 2016; 54:3232–6. Doi: 10.1080/13880209.2016.1216135.

Satria D. The effect of extraction method of Vernonia

amygdalina Delile. leaves on cardiotonic effect. Farmacia.

; 71:392–6. Doi: 10.31925/farmacia.2023.2.20.

Satria D, Harahap U, Dalimunthe A, Septama AW, Hertiani T,

Nasri N. Synergistic antibacterial effect of ethyl acetate fraction

of Vernonia amygdalina Delile leaves with tetracycline against

clinical isolate methicillin-resistant Staphylococcus aureus

(MRSA) and Pseudomonas aeruginosa. Adv Pharmacol Pharm

Sci. 2023; 1–11. Doi: 10.1155/2023/2259534.

Hasibuan PAZ, Sitorus RKUAB, Hermawan A, Huda F,

Waruwu SB, Satria D. Anticancer activity of the ethylacetate

fraction of Vernonia amygdalina Delile towards overexpression

of HER-2 breast cancer cell lines. Pharmacia. 2024; 71:1–8.

Doi: 10.3897/pharmacia.71.e125788

Anh HLT, Vinh LB, Lien LT, Cuong PV, Arai M, Ha TP, Lin

HN, Dat TTH, Cuong LCV, Kim YH. In vitro study on αamylase and α-glucosidase inhibitory activities of a new

stigmastane-type steroid saponin from the leaves of Vernonia

amygdalina. Nat Prod Res. 2021; 35:873–9. Doi:

1080/14786419.2019.1607853.

Van PcP, Ngo Van H, Quang MB, Duong Thanh N, Nguyen

Van D, Thanh T Do, Minh NT, Thu HNT, Quang TN, Do TT,

Thanh LP, Thu HDT, Tuan AHL. Stigmastane-type steroid

saponins from the leaves of Vernonia amygdalina and their α -

glucosidase and xanthine oxidase inhibitory activities. Nat Prod

Res. 2024; 38:601–6. Doi: 10.1080/14786419.2023.2188589.

Hasibuan PAZ, Harahap U, Sitorus P, Satria D. The anticancer

activities of Vernonia amygdalina Delile. leaves on 4T1 breast

cancer cells through phosphoinositide 3-kinase (PI3K) pathway.

Heliyon. 2020; 6:04449. Doi: 10.1016/j.heliyon.2020.e04449.

Nerdy N, Margata L, Meliala L, Purba MS, Sembiring BM,

Ginting S, Bakri TK. In silico evaluation of the

physicochemical, pharmacokinetics, and toxicity profiles of

sesquiterpene lactones of south african leaf (Vernonia amygdalina Delile). Trop J Nat Prod Res. 2021; 5(10):1835-1840. Doi: 10.26538/tjnpr/v5i10.21

Evbuomwan L, Chukwuka EP, Obazenu EI, Ilevbare L.

Antibacterial activity of Vernonia amygdalina leaf extracts

against multidrug resistant bacterial isolates. J. Appl. Sci.

Environ. Manag. 2018; 22(1):17–21.

Oladele JO, Oyeleke OM, Oladele OT, Oladiji AT. Covid-19

treatment: investigation on the phytochemical constituents of

Vernonia amygdalina as potential coronavirus-2 inhibitors.

Comput. Toxicol. 2021; 18.

Yusoff SF, Haron FF, Mohamed TMM, Asib N, Sakimin SZ,

Abu KF. Ismail SI. Antifungal activity and phytochemical

screening of Vernonia amygdalina extract against Botrytis

cinerea causing gray mold disease on tomato fruits. Biology.

; 9(9):286.

Hasibuan PAZ, Lubis MF, Keliat JM, Azizah N. Cytotoxic test

combination of ethyl acetate extract africant leaves (Vernonia

amygdalina Delile) and gemcitabine on PANC-1 cells. AIP

Conf. Proc. 2023; 2626:1:030004. Doi: 10.1063/5.0149754.

Xi X, Wang J, Qin Y, You Y, Huang W, Zhan J. The biphasic

effect of flavonoids on oxidative stress and cell proliferation in

breast cancer cells. Antioxidants. 2022; 11:622. Doi:

3390/antiox11040622.

Sugiura R, Satoh R, Takasaki T. ERK: A double-edged sword in

cancer. ERK-dependent apoptosis as a potential therapeutic

strategy for cancer. Cells. 2021; 10:2509. Doi:

3390/cells10102509.

Khongkaew P, Wattanaarsakit P, Papadopoulos KI,

Chaemsawang W. Antioxidant effects and in vitro cytotoxicity

on human cancer cell lines of flavonoid-rich flamboyant

(Delonix regia (Bojer) Raf.) flower extract. Curr Pharm

Biotechnol. 2021; 22:1821–31. Doi:

2174/1389201021666201029154746.

Hatono M, Ikeda H, Suzuki Y, Kajiwara Y, Kawada K,

Tsukioki T, Kochi M, Suzawa K, Iwamoto T, Yamamoto H,

Shien T, Yamane M, Taira N, Doihara H, Toyooka S. Effect of

isoflavones on breast cancer cell development and their impact

on breast cancer treatments. Breast cancer research and

treatment. 2021; 185:307–16. Doi: 10.1007/s10549-020-05957-

z.

Raina R, Hussain A, Sharma R. Molecular insight into apoptosis

mediated by flavones in cancer (review). World Acad Sci J.

; 2:3. Doi: 10.3892/wasj.2020.47.

Hou Y, Shang C, Meng T, Lou W. Anticancer potential of

cardiac glycosides and steroid-azole hybrids. Steroids. 2021;

:108852. Doi: 10.1016/j.steroids.2021.108852.

Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P.

Anticancer and antiviral properties of cardiac glycosides: a

review to explore the mechanism of actions. Molecules. 2020;

:3596. Doi: 10.3390/molecules25163596.

Liu M, Huang Q, A J, Li L, Li X, Zhang Z, Dong JT. The

cardiac glycoside deslanoside exerts anticancer activity in

prostate cancer cells by modulating multiple signaling

pathways. Cancers (Basel). 2021; 13:5809. Doi:

3390/cancers13225809.

Du J, Jiang L, Chen F, Hu H, Zhou M. Cardiac glycoside

ouabain exerts anticancer activity via downregulation of

STAT3. Front Oncol. 2021; 11. Doi:

3389/fonc.2021.684316.

Satria D, Silalahi J, Haro G, Ilyas S, Hasibuan ZPA. Chemical

analysis and cytotoxic activity of nhexane fraction of

Zanthoxylum acanthopodium DC. fruits. Rasayan Journal of

Chemistry. 2019; 12:803–8. Doi: 10.31788/RJC.2019.1225180.

Wang MM, Li YN, Ming WK, Wu PF, Yi P, Gong Z, Hao X,

Yuan C. Bioassay-guided isolation of human carboxylesterase 2

inhibitory and antioxidant constituents from Laportea bulbifera:

inhibition interactions and molecular mechanism. Arabian

Journal of Chemistry. 2022; 15:103723. Doi:

1016/j.arabjc.2022.103723.

Dalimunthe A, Hasibuan PAZ, Satria D. The PI3KCA and AKT

inhibitory activities of Litsea cubeba Lour. fruits and

heartwoods towards Hela cells. Open Access Maced J Med Sci.

; 7:1422–4. Doi: 10.3889/oamjms.2019.317.

Kathiresan K, Ramakrishnan M. Biosynthesis of iron oxide

nanoparticles from dates, characterization, and investigation of

anticarcinogenic and antimicrobial properties. Kuwait J Sci.

; 49(4):1-14. Doi: 10.48129/kjs.13181.

Gómez de Cedrón M, Navarro del Hierro J, Reguero M, Wagner

S, Bouzas A, Quijada-Freire A, Reglero G, Martín D, Ramírez

de Molina A. Saponin-Rich Extracts and Their Acid

Hydrolysates Differentially Target Colorectal Cancer

Metabolism in the Frame of Precision Nutrition. Cancers

(Basel) 2020;12:3399. https://doi.org/10.3390/cancers12113399.

Rollando R, Monica E, Aftoni MH. In vitro cytotoxic potential

of Sterculia quadrifida leaf extract against human breast cancer

cell lines. TropJ Nat Prod Res. 2022; 6(8):1228-1232. Doi:

26538/tjnpr/v6i8.12

Ho Y, Suphrom N, Daowtak K, Potup P, Thongsri Y,

Usuwanthim K. Anticancer effect of Citrus hystrix DC. leaf

extract and its bioactive constituents citronellol and, citronellal

on the triple negative breast cancer MDA-MB-231 cell line.

Pharmaceuticals. 2020; 13:476. Doi: 10.3390/ph13120476.

Rodríguez De Luna SL, Ramírez-Garza RE, Serna Saldívar SO.

Environmentally friendly methods for flavonoid extraction from

plant material: impact of their operating conditions on yield and

antioxidant properties. The Scientific World Journal. 2020; 1–

Doi: 10.1155/2020/6792069.

Lefebvre T, Destandau E, Lesellier E. Selective extraction of

bioactive compounds from plants using recent extraction

techniques: a review. J Chromatogr A. 2021; 1635:461770. Doi:

1016/j.chroma.2020.461770.

Dalimunthe A, Satria D, Sitorus P, Harahap U, Angela IFD,

Waruwu SB. Cardioprotective effect of hydroalcohol extract of

andaliman (Zanthoxylum acanthopodium DC.) fruits on

doxorubicin-induced rats. Pharmaceuticals. 2024; 17:359. Doi:

3390/ph17030359.

Marrelli M, Argentieri MP, Avato P, Conforti F. Lobularia

maritima (L.) Desv. aerial parts methanolic extract: in vitro

screening of biological activity. Plants. 2020; 9:89. Doi:

3390/plants9010089.

Hasibuan PAZ, Keliat JM, Lubis MF, Nasution A. The ethyl

acetate extract of Vernonia amygdalina leaf ameliorates

gemcitabine effect against migration and invasion of PANC-1

cells via down-regulation the VEGF, COX2, and RAS/MEK

pathways. Saudi Pharmaceutical Journal. 2024; 32:101872. Doi:

1016/j.jsps.2023.101872.

Sitorus P, Keliat JM, Asfianti V, Muhammad M, Satria D. A

literature review of Artocarpus lacucha focusing on the

phytochemical constituents and pharmacological properties of

the plant. Molecules. 2022; 27:6940. Doi:

3390/molecules27206940.

Hermawan A, Satria D, Hasibuan PAZ, Huda F, Tafrihan AS,

Fatimah N, Putri DDP. Identification of potential target genes of

cardiac glycosides from Vernonia amygdalina Delile in HER2+

breast cancer cells. South African Journal of Botany. 2024;

:401–18. Doi: 10.1016/j.sajb.2023.12.002.

Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT

assay: utility, limitations, pitfalls, and interpretation in bulk and

single-cell analysis. Int J Mol Sci. 2021; 22:12827. Doi:

3390/ijms222312827.

Oktavia S, Wahyuni FS, Hasmiwati, Amir A. Piperine acts as an

anticancer agent by reducing cyclooxygenase-2 activity and

inducing apoptosis by activating p53 in HeLa cells. Trop J Nat

Prod Res. 2024; 8(2):6142-6146. Doi: 10.26538/tjnpr/v8i2.11

Hudan SH, Praticia VM. Examine the pharmacological effects

of African leaves (Vernonia amygdalina Del) and the active

compounds contained therein. Jurnal Riset Farmasi. 2022; 9–14.

Doi: 10.29313/jrf.v2i1.700.

Manohar SM, Shah P, Nair A. Flow cytometry: principles,

applications and recent advances. Bioanalysis. 2021; 13:181–98.

Doi: 10.4155/bio-2020-0267.

Cheung M, Campbell JJ, Whitby L, Thomas RJ, Braybrook J,

Petzing J. Current trends in flow cytometry automated data

analysis software. Cytometry Part A. 2021; 99:1007–21. Doi:

1002/cyto.a.24320.

Krętowski R, Jabłońska-Trypuć A, Cechowska-Pasko M. The

effect of silica nanoparticles (SiNPs) on cytotoxicity, induction

of oxidative stress and apoptosis in breast cancer cell lines. Int J

Mol Sci. 2023; 24:2037. Doi: 10.3390/ijms24032037.

Cummings BS, Schnellmann RG. Measurement of cell death in

mammalian cells. Curr Protoc Pharmacol. 2004; 25. Doi:

1002/0471141755.ph1208s25.

Micoud F, Mandrand B, Malcus‐Vocanson C. Comparison of

several techniques for the detection of apoptotic astrocytes in

vitro. Cell Prolif. 2001; 34:99–113. Doi: 10.1046/j.1365-

2001.00201x.

Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS,

Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K.

Guidelines for regulated cell death assays: a systematic

summary, a categorical comparison, a prospective. Front Cell

Dev Biol. 2021; 9. Doi: 10.3389/fcell.2021.634690.

Istiqomah MA, Hasibuan PAZ, Sumaiyah S, Yusraini E, Oku H,

Basyuni M. Anticancer effects of polyisoprenoid from Nypa

fruticans leaves by controlling expression of p53, EGFR, PI3K,

AKT1, and mTOR genes in colon cancer (WiDr) cells. Nat Prod

Commun. 2020; 15:1934578X2091841. Doi:

1177/1934578X20918412.

Marvalim C, Datta A, Lee SC. Role of p53 in breast cancer

progression: an insight into p53 targeted therapy. Theranostics.

; 13:1421–42. Doi: 10.7150/thno.81847.

Hua H, Zhang H, Chen J, Wang J, Liu J, Jiang Y. Targeting Akt

in cancer for precision therapy. J Hematol Oncol. 2021; 14:128.

Doi: 10.1186/s13045-021-01137-8.

Tsai PJ, Lai YH, Manne RK, Tsai YS, Sarbassov D, Lin HK.

Akt: a key transducer in cancer. J Biomed Sci. 2022; 29:76. Doi:

1186/s12929-022-00860-9.

Parsons CM, Muilenburg D, Bowles TL, Virudachalam S, Bold

RJ. The role of Akt activation in the response to chemotherapy

in pancreatic cancer. Anticancer Res. 2010; 30:3279–89.

Mahmood MA, Abd AH, Kadhim EJ. Investigating the impact

of phenolic and terpene fractions extracted from Prunus

arabicaon p53 protein expression in AMJ13 and SK-GT-4

human cancer cell lines. Trop J Nat Prod Res. 2023; 7(11):5266-

Doi: 10.26538/tjnpr/v7i11.35