Enhancing the Pharmaceutical Properties of Ibuprofen through Spherical Agglomeration-Co-Crystallization with Nicotinamide: A Comprehensive Study of Micromeritic, Tabletability, and Dissolution Characteristics

Main Article Content

Indra INDRA
Tria G. G. Irawan
Yudila A. Nurwahidah
Firman Gustaman
Fajar Setiawan

Abstract

Developing efficient methods for cocrystal production is crucial to improving drug solubility
and bioavailability. This study utilized the spherical agglomeration-co-crystallization (SA-CC)
method to produce spherical ibuprofen-nicotinamide (IBU-NICO) cocrystals. This method used
ethanol (ETA) as a solvent and a mixture of deionized water and PEG-4000 as an anti-solvent,
enhancing the micromeritic properties of the cocrystal. The addition of dichloromethane (DCM)
facilitated the formation of spherical particles via rapid viscous phase transition. Fouriertransform infrared (FTIR) spectroscopy identified significant molecular interactions, such as
hydrogen bonding between the ibuprofen carboxyl and nicotinamide acylamino groups, ensuring
cocrystal stability. Hot-stage microscopy (HSM) and scanning electron microscopy (SEM)
analyses demonstrated that cocrystals exhibited lower thermal stability but improved dissolution
rates due to their amorphous-crystalline structures and rough, porous surfaces. Differential
scanning calorimetry (DSC) showed altered thermal profiles with a reduction of 7.21oC,
indicating modified crystal lattice structures. Powder X-ray diffraction (PXRD) confirmed the
creation of new crystalline phases. Micromeritic evaluations revealed favorable particle size
distribution (PSD) with an average size of 5 mm, enhanced flowability, and compressibility,
with cocrystals showing superior tensile strength (2.36 MPa at 207.97 MPa) and dissolution
rates 2.82 times higher than pure IBU at pH 6.8. These findings highlight the potential of the
SA-CC method to produce cocrystals with enhanced drug properties, paving the way for
improved pharmaceutical formulations.

Article Details

How to Cite
INDRA, I., Irawan, T. G. G., Nurwahidah, Y. A., Gustaman, F., & Setiawan, F. (2024). Enhancing the Pharmaceutical Properties of Ibuprofen through Spherical Agglomeration-Co-Crystallization with Nicotinamide: A Comprehensive Study of Micromeritic, Tabletability, and Dissolution Characteristics. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7715-7721. https://doi.org/10.26538/tjnpr/v8i7.14
Section
Articles
Author Biography

Fajar Setiawan, Pharmaceutics Group, Faculty of Pharmacy, Universitas Bakti Tunas Husada, Tasikmalaya West Java 46115, Indonesia



References

Chen H, Xu H, Wang C, Kang H, Haynes CL,

Mahanthappa MK, Sun CC. Novel Quasi-Emulsion Solvent

Diffusion-Based Spherical Cocrystallization Strategy for

Simultaneously Improving the Manufacturability and

Dissolution of Indomethacin. Cryst Growth Des.

;20(10):6752–62.

Rojas J, Buckner IS, Kumar V. Co-Proccessed Excipients

With Enhanced Direct Compression Functionality for

Improved Tableting Performance. Drug Dev Ind Pharm.

;38(10):1159–70.

Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M.

Compaction and Tableting Properties of Composite

Particles of Microcrystalline Cellulose and Crospovidone

Engineered for Direct Compression. Futur J Pharm Sci.

;6(1).

Bolla G, Nangia A. Pharmaceutical Cocrystals: Walking the

Talk. Chem Commun. 2016;52(54):8342–60.

Nugraha YP, Unique IGANP, Miyake T, Rahmah R, Indra

I, Soewandhi SN, Uekusa H. Structural Characterization

and Pharmaceutical Evaluation of Telmisartan

Hydrochloride Salts. Crystals. 2024;14(2):151.

Izutsu K, Koide T, Takata N, Ikeda Y, Ono M.

Characterization and Quality Control of Cocrystals. Chem

Pharm Bull. 2016;64(10):1421–30.

Indra I, Wikarsa S, Nugraha YP, Suendo V, Uekusa H,

Soewandhi SN. Utilizing hot-stage polarized microscopy

and ATR-FTIR for ramipril co-crystal screening, supported

by principal component analysis and cluster analysis. J

Pharm Pharmacogn Res. 2023;11(6):1137–48.

achado TC, Kavanagh , Cardoso , Rodr guezHornedo N. Synchronization of Cocrystal Dissolution and

Drug Precipitation to Sustain Drug Supersaturation. Mol

Pharm. 2022;19(8):2765–75.

Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN,

Pratiwi YS, Arifin H. Cocrystal of ibuprofen–nicotinamide:

Solid-state characterization and in vivo analgesic activity

evaluation. Sci Pharm. 2018;86(2).

Chen H, Guo Y, Wang C, Dun J, Sun CC. Spherical

Cocrystallization - An Enabling Technology for the

Development of High Dose Direct Compression Tablets of

Poorly Soluble Drugs. Cryst Growth Des.

;19(4):2503–10.

Pagire SK, Korde SA, Whiteside BR, Kendrick J, Paradkar

A. Spherical crystallization of carbamazepine/saccharin cocrystals: Selective agglomeration and purification through

surface interactions. Cryst Growth Des. 2013;13(10):4162–7.

Wang X, Li Z, Zhang C, Wen T, Zhou Y, Ouyang J.

Designing Spherical Particles of Arbidol Hydrochloride via

Spherical Crystallization: Preparation and Characterization.

Ind Eng Chem Res. 2024;63(12):5249–60.

Wu S, Li K, Zhang T, Gong J. Size Control of Atorvastatin

Calcium Particles Based on Spherical Agglomeration.

Chem Eng Technol. 2015;38(6):1081–7.

Peña R, Nagy ZK. Process Intensification Through

Continuous Spherical Crystallization Using a Two-Stage

Mixed Suspension Mixed Product Removal (MSMPR)

System. Cryst Growth Des. 2015;15(9):4225–36.

Sowa M, Klapwijk AR, Ostendorf M, Beckmann W.

Particle Engineering of an Active Pharmaceutical Ingredient

for Improved Micromeritic Properties. Chem Eng Technol.

;40(7):1282–92.

Hansen J, Kleinebudde P. Enabling the direct compression

of metformin hydrochloride through QESD crystallization.

Int J Pharm. 2021;605(March):120796.

Alatas F, Pratiwi GK, Meylifepri H. Multicomponent

Crystal Formation of Dexibuprofen-Caffeine to Improve

Solubility. Trop J Nat Prod Res. 2023;7(10):4128–32.

Anggraini D, Firmansyah F, Novita G, Audia RA.

Improving the Solubility of Fenofibric Acid via

Multicomponent Crystal Formation with Theobromine

Coformer. Trop J Nat Prod Res. 2024;8(4):6901–5.

Anggraini D, Umar S, Arifin H, Zaini E. Dissolution rate

enhancement and physicochemical characterization of a

fenofibric acid–nicotinamide eutectic mixture. Trop J Nat

Prod Res. 2021;5(9):1614–8.

Zaini E, Marhammah RP, Fitriani L, Hasanah U, Umar S.

The Preparation and Characterization of the Solid

Dispersion of Piperine with Hydroxypropyl Methylcellulose

(HPMC) 2910 Using Spray Drying. Trop J Nat Prod Res.

;5(12):2103–7.

Kumara GHAJJ, Hayano K, Ogiwara K. Image Analysis

Techniques on Evaluation of Particle Size Distribution of

Gravel. Int J GEOMATE. 2012;3(1):290–7.

Thakur A, Thipparaboina R, Kumar D, Sai Gouthami K,

Shastri NR. Crystal engineered albendazole with improved

dissolution and material attributes. CrystEngComm.

;18(9):1489–94.

Pitt K, Peña R, Tew JD, Pal K, Smith R, Nagy ZK, Litster

JD. Particle design via spherical agglomeration: A critical

review of controlling parameters, rate processes and

modelling. Powder Technol. 2018;326:327–43.

Lin SY. Simultaneous screening and detection of

pharmaceutical co-crystals by the one-step DSC–FTIR

microspectroscopic technique. Drug Discov Today.

;22(4):718–28.

Biedrzycka K, Marcinkowska A. The Use of Hot Melt

Extrusion to Prepare a Solid Dispersion of Ibuprofen in a

Polymer Matrix. Polymers (Basel). 2023;15(13):2912.

Januś E, ssowicz P, Klebeko J, Nowak A, Duchnik W,

Kucharski Ł, Klimowicz A. Enhancement of Ibuprofen

Solubility and Skin Permeation by Conjugation With lValine Alkyl Esters. RSC Adv. 2020;10(13):7570–84.

Alhadid A, Kefalianakis L, Wendler A, Nasrallah S, Jandl

C, Kronawitter SM, Kieslich G, Minceva M.

Thermodynamic Approach for Estimating the Melting

Enthalpy of Cocrystals. Cryst Growth Des.

;24(11):4770–80.

Vasilev NA, Surov AO, Voronin AP, Drozd K V.,

Perlovich GL. Novel cocrystals of itraconazole: Insights

from phase diagrams, formation thermodynamics and

solubility. Int J Pharm. 2021;599(March):120441.

Octavia MD, Hasmiwati H, Revilla G, Zaini E.

Multicomponent Crystals of Piperine-Nicotinic Acid: The

Physicochemical and Dissolution Rate Properties. Trop J

Nat Prod Res. 2023;7(8):3701–5.

Chatterjee A, Gupta MM, Srivastava B. Spherical

Crystallization: A Technique Use to Reform Solubility and

Flow Property of Active Pharmaceutical Ingredients. Int J

Pharm Investig. 2017;7(1):4.

Nitsure A, Patel D, Wairkar S. Improved processability of

ethambutol hydrochloride by spherical agglomeration.

Pharm Dev Technol. 2020;25(3):376–84.

Cui P, Yang W, Yin Q, Zhou L, Zhang M, Bao Y, Xie C,

Hou B, Yin Q. Spherulitic Growth Strategy for AgitationInduced Formation of Spherical Amoxicillin Sodium

Products. Ind Eng Chem Res. 2022;61(27):9821–32.

Ravouru N, Penjuri SCB, Damineni S, Muni RL, Poreddy

SR. Preparation and in vitro evaluation of ibuprofen

spherical agglomerates. Turkish J Pharm Sci. 2018;15(1):7–

Karagianni A, Malamatari M, Kachrimanis K.

Pharmaceutical cocrystals: New solid phase modification

approaches for the formulation of APIs. Pharmaceutics.

;10(1):1–30.

Kavanagh ON, Wang C, Walker GM, Sun CC. Modulation

of the powder properties of lamotrigine by crystal forms. Int

J Pharm. 2021;595(January):120274.

Chow SF, Chen M, Shi L, Chow AHL, Sun CC.

Simultaneously improving the mechanical properties,

dissolution performance, and hygroscopicity of ibuprofen

and flurbiprofen by cocrystallization with nicotinamide.

Pharm Res. 2012;29(7):1854–65.

Shin DW, Lee SJ, Ha Y, Choi Y-S, Kim JW, Park S, Park

M. Pharmacokinetic and Pharmacodynamic Evaluation

According to Absorption Differences in Three Formulations

of Ibuprofen. Drug Des Dev Ther. 2017;Volume11:135–41.