Enhancing the Pharmaceutical Properties of Ibuprofen through Spherical Agglomeration-Co-Crystallization with Nicotinamide: A Comprehensive Study of Micromeritic, Tabletability, and Dissolution Characteristics
Main Article Content
Abstract
Developing efficient methods for cocrystal production is crucial to improving drug solubility
and bioavailability. This study utilized the spherical agglomeration-co-crystallization (SA-CC)
method to produce spherical ibuprofen-nicotinamide (IBU-NICO) cocrystals. This method used
ethanol (ETA) as a solvent and a mixture of deionized water and PEG-4000 as an anti-solvent,
enhancing the micromeritic properties of the cocrystal. The addition of dichloromethane (DCM)
facilitated the formation of spherical particles via rapid viscous phase transition. Fouriertransform infrared (FTIR) spectroscopy identified significant molecular interactions, such as
hydrogen bonding between the ibuprofen carboxyl and nicotinamide acylamino groups, ensuring
cocrystal stability. Hot-stage microscopy (HSM) and scanning electron microscopy (SEM)
analyses demonstrated that cocrystals exhibited lower thermal stability but improved dissolution
rates due to their amorphous-crystalline structures and rough, porous surfaces. Differential
scanning calorimetry (DSC) showed altered thermal profiles with a reduction of 7.21oC,
indicating modified crystal lattice structures. Powder X-ray diffraction (PXRD) confirmed the
creation of new crystalline phases. Micromeritic evaluations revealed favorable particle size
distribution (PSD) with an average size of 5 mm, enhanced flowability, and compressibility,
with cocrystals showing superior tensile strength (2.36 MPa at 207.97 MPa) and dissolution
rates 2.82 times higher than pure IBU at pH 6.8. These findings highlight the potential of the
SA-CC method to produce cocrystals with enhanced drug properties, paving the way for
improved pharmaceutical formulations.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Chen H, Xu H, Wang C, Kang H, Haynes CL,
Mahanthappa MK, Sun CC. Novel Quasi-Emulsion Solvent
Diffusion-Based Spherical Cocrystallization Strategy for
Simultaneously Improving the Manufacturability and
Dissolution of Indomethacin. Cryst Growth Des.
;20(10):6752–62.
Rojas J, Buckner IS, Kumar V. Co-Proccessed Excipients
With Enhanced Direct Compression Functionality for
Improved Tableting Performance. Drug Dev Ind Pharm.
;38(10):1159–70.
Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M.
Compaction and Tableting Properties of Composite
Particles of Microcrystalline Cellulose and Crospovidone
Engineered for Direct Compression. Futur J Pharm Sci.
;6(1).
Bolla G, Nangia A. Pharmaceutical Cocrystals: Walking the
Talk. Chem Commun. 2016;52(54):8342–60.
Nugraha YP, Unique IGANP, Miyake T, Rahmah R, Indra
I, Soewandhi SN, Uekusa H. Structural Characterization
and Pharmaceutical Evaluation of Telmisartan
Hydrochloride Salts. Crystals. 2024;14(2):151.
Izutsu K, Koide T, Takata N, Ikeda Y, Ono M.
Characterization and Quality Control of Cocrystals. Chem
Pharm Bull. 2016;64(10):1421–30.
Indra I, Wikarsa S, Nugraha YP, Suendo V, Uekusa H,
Soewandhi SN. Utilizing hot-stage polarized microscopy
and ATR-FTIR for ramipril co-crystal screening, supported
by principal component analysis and cluster analysis. J
Pharm Pharmacogn Res. 2023;11(6):1137–48.
achado TC, Kavanagh , Cardoso , Rodr guezHornedo N. Synchronization of Cocrystal Dissolution and
Drug Precipitation to Sustain Drug Supersaturation. Mol
Pharm. 2022;19(8):2765–75.
Yuliandra Y, Zaini E, Syofyan S, Pratiwi W, Putri LN,
Pratiwi YS, Arifin H. Cocrystal of ibuprofen–nicotinamide:
Solid-state characterization and in vivo analgesic activity
evaluation. Sci Pharm. 2018;86(2).
Chen H, Guo Y, Wang C, Dun J, Sun CC. Spherical
Cocrystallization - An Enabling Technology for the
Development of High Dose Direct Compression Tablets of
Poorly Soluble Drugs. Cryst Growth Des.
;19(4):2503–10.
Pagire SK, Korde SA, Whiteside BR, Kendrick J, Paradkar
A. Spherical crystallization of carbamazepine/saccharin cocrystals: Selective agglomeration and purification through
surface interactions. Cryst Growth Des. 2013;13(10):4162–7.
Wang X, Li Z, Zhang C, Wen T, Zhou Y, Ouyang J.
Designing Spherical Particles of Arbidol Hydrochloride via
Spherical Crystallization: Preparation and Characterization.
Ind Eng Chem Res. 2024;63(12):5249–60.
Wu S, Li K, Zhang T, Gong J. Size Control of Atorvastatin
Calcium Particles Based on Spherical Agglomeration.
Chem Eng Technol. 2015;38(6):1081–7.
Peña R, Nagy ZK. Process Intensification Through
Continuous Spherical Crystallization Using a Two-Stage
Mixed Suspension Mixed Product Removal (MSMPR)
System. Cryst Growth Des. 2015;15(9):4225–36.
Sowa M, Klapwijk AR, Ostendorf M, Beckmann W.
Particle Engineering of an Active Pharmaceutical Ingredient
for Improved Micromeritic Properties. Chem Eng Technol.
;40(7):1282–92.
Hansen J, Kleinebudde P. Enabling the direct compression
of metformin hydrochloride through QESD crystallization.
Int J Pharm. 2021;605(March):120796.
Alatas F, Pratiwi GK, Meylifepri H. Multicomponent
Crystal Formation of Dexibuprofen-Caffeine to Improve
Solubility. Trop J Nat Prod Res. 2023;7(10):4128–32.
Anggraini D, Firmansyah F, Novita G, Audia RA.
Improving the Solubility of Fenofibric Acid via
Multicomponent Crystal Formation with Theobromine
Coformer. Trop J Nat Prod Res. 2024;8(4):6901–5.
Anggraini D, Umar S, Arifin H, Zaini E. Dissolution rate
enhancement and physicochemical characterization of a
fenofibric acid–nicotinamide eutectic mixture. Trop J Nat
Prod Res. 2021;5(9):1614–8.
Zaini E, Marhammah RP, Fitriani L, Hasanah U, Umar S.
The Preparation and Characterization of the Solid
Dispersion of Piperine with Hydroxypropyl Methylcellulose
(HPMC) 2910 Using Spray Drying. Trop J Nat Prod Res.
;5(12):2103–7.
Kumara GHAJJ, Hayano K, Ogiwara K. Image Analysis
Techniques on Evaluation of Particle Size Distribution of
Gravel. Int J GEOMATE. 2012;3(1):290–7.
Thakur A, Thipparaboina R, Kumar D, Sai Gouthami K,
Shastri NR. Crystal engineered albendazole with improved
dissolution and material attributes. CrystEngComm.
;18(9):1489–94.
Pitt K, Peña R, Tew JD, Pal K, Smith R, Nagy ZK, Litster
JD. Particle design via spherical agglomeration: A critical
review of controlling parameters, rate processes and
modelling. Powder Technol. 2018;326:327–43.
Lin SY. Simultaneous screening and detection of
pharmaceutical co-crystals by the one-step DSC–FTIR
microspectroscopic technique. Drug Discov Today.
;22(4):718–28.
Biedrzycka K, Marcinkowska A. The Use of Hot Melt
Extrusion to Prepare a Solid Dispersion of Ibuprofen in a
Polymer Matrix. Polymers (Basel). 2023;15(13):2912.
Januś E, ssowicz P, Klebeko J, Nowak A, Duchnik W,
Kucharski Ł, Klimowicz A. Enhancement of Ibuprofen
Solubility and Skin Permeation by Conjugation With lValine Alkyl Esters. RSC Adv. 2020;10(13):7570–84.
Alhadid A, Kefalianakis L, Wendler A, Nasrallah S, Jandl
C, Kronawitter SM, Kieslich G, Minceva M.
Thermodynamic Approach for Estimating the Melting
Enthalpy of Cocrystals. Cryst Growth Des.
;24(11):4770–80.
Vasilev NA, Surov AO, Voronin AP, Drozd K V.,
Perlovich GL. Novel cocrystals of itraconazole: Insights
from phase diagrams, formation thermodynamics and
solubility. Int J Pharm. 2021;599(March):120441.
Octavia MD, Hasmiwati H, Revilla G, Zaini E.
Multicomponent Crystals of Piperine-Nicotinic Acid: The
Physicochemical and Dissolution Rate Properties. Trop J
Nat Prod Res. 2023;7(8):3701–5.
Chatterjee A, Gupta MM, Srivastava B. Spherical
Crystallization: A Technique Use to Reform Solubility and
Flow Property of Active Pharmaceutical Ingredients. Int J
Pharm Investig. 2017;7(1):4.
Nitsure A, Patel D, Wairkar S. Improved processability of
ethambutol hydrochloride by spherical agglomeration.
Pharm Dev Technol. 2020;25(3):376–84.
Cui P, Yang W, Yin Q, Zhou L, Zhang M, Bao Y, Xie C,
Hou B, Yin Q. Spherulitic Growth Strategy for AgitationInduced Formation of Spherical Amoxicillin Sodium
Products. Ind Eng Chem Res. 2022;61(27):9821–32.
Ravouru N, Penjuri SCB, Damineni S, Muni RL, Poreddy
SR. Preparation and in vitro evaluation of ibuprofen
spherical agglomerates. Turkish J Pharm Sci. 2018;15(1):7–
Karagianni A, Malamatari M, Kachrimanis K.
Pharmaceutical cocrystals: New solid phase modification
approaches for the formulation of APIs. Pharmaceutics.
;10(1):1–30.
Kavanagh ON, Wang C, Walker GM, Sun CC. Modulation
of the powder properties of lamotrigine by crystal forms. Int
J Pharm. 2021;595(January):120274.
Chow SF, Chen M, Shi L, Chow AHL, Sun CC.
Simultaneously improving the mechanical properties,
dissolution performance, and hygroscopicity of ibuprofen
and flurbiprofen by cocrystallization with nicotinamide.
Pharm Res. 2012;29(7):1854–65.
Shin DW, Lee SJ, Ha Y, Choi Y-S, Kim JW, Park S, Park
M. Pharmacokinetic and Pharmacodynamic Evaluation
According to Absorption Differences in Three Formulations
of Ibuprofen. Drug Des Dev Ther. 2017;Volume11:135–41.