Characterisation, Metabolite Profile, and Antioxidant Activity of Silver Nanoparticles Synthesised Using the Algae Palmaria palmata

Main Article Content

Evika S. Savitri
Hafidah N. Auliyah
Bayyinatul Muchtaromah

Abstract

Palmaria palmata contains phytochemicals with potential antioxidant properties, such as
polyphenols and mycosporins (MAAs). Phycoerythrin and phycocyanin are pigments found in
the red algae species Palmaria palmata. It is believed that P. palmata derived silver
nanoparticles have excellent antioxidant activity. This study aims to determine the
morphological, metabolite profile and antioxidant activity of silver nanoparticle compounds
synthesised using P. palmata. The green synthesis of silver nanoparticles was performed using
P. palmata as a bioreductant. The morphological characteristics observed were the size and
shape of the particles, which were observed using the particle size analyser (PSA) and scanning
electron microscopy (SEM). Biochemical characteristics studied were secondary metabolite
profiles and antioxidant activity of silver nanoparticle compounds using P. palmata. The
metabolite profile was tested using High-Performance Liquid Chromatography (HPLC). The
antioxidant activity was tested using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method with
ascorbic acid as the positive control. The study showed that P. palmata AgNPs are spherical,
with a size of 185.5 nm. P. palmata AgNP contains phenolic group metabolites of gallic acid at
a retention time of 2.74 minutes with a peak height of 89.248 mAu and a relative peak area of
98.73%. The antioxidant activity of AgNP synthesised using P. palmata possesses an IC50 value
of 17.113 ± 1.584 ppm, indicating a more robust antioxidant activity compared to the extract of
P. palmata, which had an IC50 value of 33.875 ± 11.238 ppm

Article Details

How to Cite
Savitri, E. S., Auliyah, H. N., & Muchtaromah, B. (2024). Characterisation, Metabolite Profile, and Antioxidant Activity of Silver Nanoparticles Synthesised Using the Algae Palmaria palmata. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7698–7703. https://doi.org/10.26538/tjnpr/v8i7.11
Section
Articles

References

Restrepo C, Villa C. Synthesis of Silver Nanoparticles, Influence

of Capping Agents, and Dependence on Size and Shape: A

Review. Environ Nanotechnol Monit Manag. 2021;15:100428.

Srikar S, Giri D, Pal D, Mishra P, Upadhyay S. Green Synthesis

of Silver Nanoparticles: A Review. Green Sustain Chem.

;06:34–56.

Nagar N, Jain S, Kachhawah P, Devra V. Synthesis and

characterisation of silver nanoparticles via green route. Korean J

Chem Eng. 2016;33(10):2990–7.

Chugh D, Viswamalya VS, Das B. Green synthesis of silver

nanoparticles with algae and the importance of capping agents in

the process. J Genet Eng Biotechnol. 202;19(1):126.

Sharma V, Yngard R, Lin Y. Sharma, V. K., Yngard, R. A. &

Lin, Y. Silver nanoparticles: Green synthesis and their

antimicrobial activities. Adv. Colloid Interface Sci. 145, 83-96.

;145:83–96.

Galland-Irmouli AV, Pons L, Luçon M, Villaume C, Mrabet NT,

Guéant JL, et al. One-step purification of R-phycoerythrin from

the red macroalga Palmaria palmata using preparative

polyacrylamide gel electrophoresis. J Chromatogr B Biomed Sci

Appl. 2000;739(1):117–23.

Dumay J, Clément N, Morançais M, Fleurence J. Optimization

of hydrolysis conditions of Palmaria palmata to enhance Rphycoerythrin extraction. Bioresour Technol. 2013;131:21–7.

Sugita D, Joe GH, Masuoka M, Konishi Y, Saeki H. Effect of

drying treatment on the extractability and anti-inflammatory

function of photosynthesis-related components in dulse

Palmaria palmata and their efficient recovery from dried thallus.

Fish Sci. 2022;88(5):645–52.

Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle

Characterization: What to Measure? Adv Mater.

;31(32):1901556.

Cox S, Abu-Ghannam N, Gupta S. An Assessment of the

Antioxidant and Antimicrobial Activity of Six Species of Edible

Irish Seaweeds. Int Food Res J. 2009;17: 205-220

Rajivgandhi GN, Ramachandran G, Maruthupandy M,

Manoharan N, Alharbi NS, Kadaikunnan S. Antioxidant, antibacterial and anti-biofilm activity of biosynthesised silver

nanoparticles using Gracilaria corticata against biofilm

producing K. pneumoniae. Colloids Surf A Physicochem Eng

Asp. 2020;600:124830.

Firouzy M, Hashemi P. Ionic Liquid-Based Magnetic Needle

Headspace Single-Drop Microextraction Combined with

HPLC/UV for the Determination of Chlorophenols in

Wastewater. J Chromatogr Sci. 2023;61(8):743–9.

Nurbaya Sari R, Nurhasni N, Yaqin MA. Green Synthesis

Nanoparticle ZnO Sargassum sp. Extract and The product

characteristics. J Pengolah Has Perikan Indones. 2017;20:238.

Shahidi F, Zhong Y. Measurement of antioxidant activity. J

Funct Foods. 2015;18:757–81.

Donno D, Mellano MG, De Biaggi M, Riondato I, Rakotoniaina

EN, Beccaro GL. New Findings in Prunus padus L. Fruits as a

Source of Natural Compounds: Characterization of Metabolite

Profiles and Preliminary Evaluation of Antioxidant Activity.

Molecules. 2018; 23 (4): 725. DOI:10.3390/molecules23040725

Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale

RG. Synthesis and characterisation of silver nanoparticles using

Gelidium amansii and its antimicrobial property against various

pathogenic bacteria. Microb Pathog. 2018;114:41–5.

Muchtaromah B, Wahyudi D, Ahmad M, Annisa R.

Nanoparticle Characterization of Allium sativum, Curcuma

mangga and Acorus calamus as a Basic of Nanotechnology on

Jamu Subur Kandungan Madura. Pharmacogn. J. 2020;12:1152–

Haleemkhan AA, Naseem, Vardhini BV. Synthesis of

Nanoparticles from Plant Extracts. In 2015. Available from:

https://api.semanticscholar.org/CorpusID:212516780

Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles

with different shapes. Arab J Chem. 2019;12(8):1823–38.

Kale R, Barwar S, Kane P, More S. Green Synthesis of Silver

Nanoparticles Using Papaya Seed and Its Characterisation. Int J

Res Appl Sci Eng Technol. 2018;6: 75-86

Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan

N, Nair SV, et al. Synthesis, characterisation, cytotoxicity and

antibacterial studies of chitosan, O-carboxymethyl and N,Ocarboxymethyl chitosan nanoparticles. Carbohydr Polym.

;78(4):672–7.

Banik N, Hussain A, Ramteke A, Sharma HK, Maji TK.

Preparation and evaluation of the effect of particle size on the

properties of chitosan-montmorillonite nanoparticles loaded with

isoniazid. RSC Adv. 2012;2(28):10519–28.

Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M,

Rakhshanipour M, Shameli K. Green synthesis of silver

nanoparticles using plant extracts. Korean J Chem Eng.

;31(4):548–57.

Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F,

Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial

activity of silver nanoparticles with different sizes. J Nanopart

Res. 2008;10(8):1343–8.

Gallagher JA, Adams JMM, Turner LB, Kirby ME, Toop TA,

Mirza MW. Bio-processing of macroalgae Palmaria palmata:

metabolite fractionation from pressed fresh material and ensiling

considerations for long-term storage. J Appl Phycol.

;33(1):533–44.

Fernandes FHA, Salgado HRN. Gallic Acid: Review of the

Methods of Determination and Quantification. Crit Rev Anal

Chem. 2016;46(3):257–65.

Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani

R, Naseri R. Pharmacological effects of gallic acid in health and

disease: A mechanistic review. Iran J Basic Med Sci.

;22(3):225–37.

Bai J, Zhang Y, Tang C, Hou Y, Ai X, Chen X, Zhang Y, Wang

X, Meng X. Gallic acid: Pharmacological activities and

molecular mechanisms involved in inflammation-related

diseases. Biomed Pharmacother. 2021;133:110985.

Wu D, Yu D, Zhang Y, Dong J, Li D, Wang D. Metabolite

Profiles, Bioactivity, and HPLC Fingerprint of Different

Varieties of Eucommia ulmoides Oliv.: Towards the Utilisation

of Medicinal and Commercial Chinese Endemic Tree.

Molecules. 2018;23(8).

Srećković NZ, Nedić ZP, Liberti D, Monti DM, Mihailović NR,

Katanić Stanković JS, et al. Application potential of biogenically

synthesised silver nanoparticles using Lythrum salicaria L.

extracts as pharmaceuticals and catalysts for organic pollutant

degradation. RSC Adv. 2021;11(56):35585–99.

Essghaier B, Khedher G, Hannachi H, Dridi R, Zid M, Chaffei

C. Green Synthesis of Silver Nanoparticles Using Mixed Leaves

Aqueous Extract of Wild Olive and Pistachio: Characterization,

Enhancing Antioxidant, Antimicrobial Potential and Effect on

Virulence Factors of Candida. Arch Microbiol. 2021.204(4),

Awwad A, Farhan A. Biosynthesis of Silver Nanoparticles using

Olea europaea Leaves Extract and its Antibacterial Activity.

Nanosci Nanotechnol, 2012. 2(6), 164-170.

Nishida Y, Kumagai Y, Michiba S, Yasui H, Kishimura H.

Efficient Extraction and Antioxidant Capacity of MycosporineLike Amino Acids from Red Alga Dulse Palmaria palmata in

Japan. Mar Drugs. 2020;18(10):502. doi: 10.3390/md18100502.

Ifeanyi, O. E.. A review on free radicals and antioxidants. Int. J.

Curr. Res. Med. Sci. 2018. 4(2), 123-133.

Akintola AO, Kehinde BD, Ayoola PB, Adewoyin AG, Adedosu

OT, Ajayi JF, Ogunsona SB. Antioxidant properties of silver

nanoparticles biosynthesised from methanolic leaf extract of

Blighia sapida. IOP Conference Series: Mater Sci Eng.

;805(1):012004. doi:10.1088/1757-899X/805/1/012004

Lim S, Choi AH, Kwon M, Joung EJ, Shin T, Lee SG, et al.

Evaluation of antioxidant activities of various solvent extracts

from Sargassum serratifolium and its major antioxidant

components. Food Chem. 2019;278:178–84.

Azizi S, Namvar F, Mahdavi Shahri M, Ahmad M, Mohamad R.

Biosynthesis of Silver Nanoparticles Using Brown Marine

Macroalga, Sargassum Muticum Aqueous Extract. Materials.

; 6(12):5942-5950. https://doi.org/10.3390/ma6125942

Evika Sandi Savitri, Eko Budi Minarno, Lutfiyatul Azizah.

Characterisation, Antioxidant, and Antibacterial Activity Silver

Nanoparticle of Gelidium spinosum. In: Proceedings of the 12th

International Conference on Green Technology (ICGT 2022)

[Internet]. Atlantis Press; 2023. p. 45–59. DOI:10.2991/978-94-

-148-7_6

Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G.

Antioxidant and antibacterial activity of silver nanoparticles

synthesised by Cestrum nocturnum. J Ayurveda Integr Med.

;11(1):37–44.

Lih, H. T., Airemwen, C. O., & Halilu, E. M.

PhytochemicalStudies and Evaluation of Silver Nanoparticles

Synthesised from Solanum elaeagnifolium Leaves Extract for

Antioxidant and Antibacterial Activities. Trop. J. Nat. Prod.

Res. 2024;8(2):6440-6445