Antibacterial Potentials of Blumea balsamifera L. Essential Oil Against Streptococcus Pyogenes and Streptococcus Pneumoniae: In Vitro and In Silico Screening

Main Article Content

Nguyen T. T. Hai
Do T. Q. Huong
Nguyen V. Hoang
Thanh Q. Bui
Phan T. Quy
Nguyen V. Phu
Nguyen D. Chau
Tran Q. Huy
Dang T. Hue
Nguyen T. A. Nhung

Abstract

Blumea balsamifera L. essential oil (EO) has been known for its diverse antimicrobial activities.
This study aimed to determine the antibacterial activity of Blumea balsamifera EO against two
strains of pathogenic bacteria (Streptococcus pyogenes and Streptococcus pneumoniae) through
in vitro and in silico methods. The phytochemical screening of the EO and other
physicochemical properties (DFT, ADMET, and drug-likeness) were determined using standard
protocols. In vitro results show that the EO possesses promising antibacterial properties with
inhibition zone diameters (IZDs) of 10 ± 2 and 18 ± 2 mm, respectively, for S. pyogenes and S.
pneumoniae; MICs 2.50 and 1.25 µL.mL-1
; MBC/MIC ratios 1 and 2. GC-MS characterization
of the EO identified 17 constituents (1-17). The binding affinity of the compounds against the
target proteins are in the following order: 16-P0C0C7 ( -9.4 kcal.mol-1
) > 4-P0C0C7 ( -9.3
kcal.mol-1
) > 15-P0C0C7 ≈ 17-P0C0C7 ( -9.2 kcal.mol-1
); 3-Q8DQF8 ( -9.0 kcal.mol-1
) >
4-Q8DQF8 ( -8.9 kcal.mol-1
) > 15-Q8DQF8 ( -8.7 kcal.mol-1
); 16-6LU7 ( -9.0 kcal.mol1
) ≈ 17-6LU7 ( -9.1 kcal.mol-1
). The phytochemicals potentiality derived from quantum
calculation were 3 (3.40 Debye), 15 (2.47 Debye), and 5 (2.03 Debye). The suitability for
physicochemical and pharmacokinetic applications was assessed via reference to Lipinski’s rule
of five and Pires’ interpretations, respectively. The analysis shows that (+)-2-Bornanone (3;
58.00 %) was the primary bioactive component responsible for the observable antibacterial
activities given by its predominant content and favorable predictions. Compound 3 could further
be investigated for its antibacterial activity by isolating and characterizing its pure form.

Article Details

How to Cite
Hai, N. T. T., Huong, D. T. Q., Hoang, N. V., Bui, T. Q., Quy, P. T., Phu, N. V., Chau, N. D., Huy, T. Q., Hue, D. T., & Nhung, N. T. A. (2024). Antibacterial Potentials of Blumea balsamifera L. Essential Oil Against Streptococcus Pyogenes and Streptococcus Pneumoniae: In Vitro and In Silico Screening. Tropical Journal of Natural Product Research (TJNPR), 8(7), 7658-7671. https://doi.org/10.26538/tjnpr/v8i7.5
Section
Articles

References

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARSCoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.

Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A

comprehensive review. Eur J Med Chem. 2023;115772.

Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G. The SARS‐CoV‐2 main protease (Mpro): structure, function, and emerging therapies for COVID‐19. MedComm. 2022;3(3):e151.

Shulman ST, Bisno AL, Clegg HW, Gerber MA, Kaplan EL, Lee G, Martin JM, Van Beneden C. Clinical practice guideline for the diagnosis and management of group A Streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin Infect Dis. 2012;55(10):e86–102.

Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public health risk factors, prevention and control. Pathogens. 2021;10(2):Article ID 248.

Lyon WR, Madden JC, Levin JC, Stein JL, Caparon MG. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol. 2001;42(1):145–57.

Kang SO, Caparon MG, Cho KH. Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase

complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression. Infect Immun. 2010;78(6):2754–67.

Van de Beek D, de Gans J, Tunkel AR, Wijdicks EFM. Community-acquired bacterial meningitis in adults. N Engl J Med. 2006;354(1):44–53.

Song S, Wood TK. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms. 2021;9(2):386.

Zhu X, Ge Y, Wu T, Zhao K, Chen Y, Wu B, Zhu F, Zhu B, Cui L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020;285:ID 198005.

Pal C, Przydzial P, Chika-Nwosuh O, Shah S, Patel P, Madan N. Streptococcus pneumoniae coinfection in COVID-19: a series of three cases. Case Rep Pulmonol. 2020; ID 8849068.

Peng Y, Yang C, Luo Y. Blumea htamanthii (Asteraceae), a new species from Myanmar. PhytoKeys. 2020;138:225.

Pang Y, Wang D, Fan Z, Chen X, Yu F, Hu X, Wang K, Yuan L. Blumea balsamifera - A phytochemical and pharmacological review. Molecules. 2014;19(7):9453–77.

Chu SS, Du SS, Liu ZL. Fumigant compounds from the essential oil of Chinese Blumea balsamifera leaves against the maize weevil (Sitophilus zeamais). J Chem. 2013;1–7.

Bhuiyan MNI, Chowdhury JU, Begum J. Chemical components in volatile oil from Blumea balsamifera (L.) DC. Bangladesh J Bot. 2009;38(1):107–9.

Sakee U, Maneerat S, Cushnie TPT, De-Eknamkul W. Antimicrobial activity of Blumea balsamifera (Lin.) DC. extracts and essential oil. Nat Prod Res. 2011;25(19):1849–56.

Ismail NA, Matawali A, Kanak FA, Lee PC, How SE, Goh LPW, Gansau JA. Antimicrobial activities and phytochemical properties of Blumea balsamifera against pathogenic microorganisms. J Med Life. 2022;15(8):951.

Yang H, Gao Y, Long L, Cai Y, Liao J, Peng J, Wang L. Antibacterial effect of Blumea balsamifera (L.) DC. essential oil against Staphylococcus aureus. Arch Microbiol. 2021;203(7):3981–8.

Hanh TTH, Giang VH, Trung NQ, Van Thanh N, Quang TH, Cuong NX. Chemical constituents of Blumea balsamifera. Phytochem Lett. 2021;43:35–9.

Thao TTP, Bui TQ, Quy PT, Bao NC, Van Loc T, Van Chien T, Chi NL, Van Tuan N, Van Sung T, Nhung NTA. Isolation, semi-synthesis, docking-based prediction, and bioassay-based activity of Dolichandrone spathacea iridoids: new catalpol derivatives as glucosidase inhibitors. RSC Adv. 2021;11:11959–75.

Thao TTP, Bui TQ, Hai NTT, Huynh LK, Quy PT, Bao NC, Dung NT, Chi NL, Van Loc T, Smirnova IE. Newly synthesised oxime and lactone derivatives from Dipterocarpus alatus dipterocarpol as anti-diabetic

inhibitors: experimental bioassay-based evidence and theoretical computation-based prediction. RSC Adv.

;11(57):35765–82.

Quy PT, Bui TQ, Bon N V, Phung PTK, Duc DPN, Nhan DT, Phu N V, To DC, Nhung NTA. Euonymus laxiflorus Champ. bioactive compounds inhibited α-glucosidase and protein phosphatase 1B – A computational approach towards the discovery of antidiabetic drugs. Trop J Nat Prod Res. 2023;7(5):2974–91.

Nguyen NPD, Quy PT, To DC, Bui TQ, Phu N V., My TTA, Nguyen PH, Kien NH, Hai NTT, Nhung NTA. Combinatory in silico study on anti-diabetic potential of Ganoderma lucidum compounds against α-glucosidase. Trop J Nat Prod Res. 2023;7(7):3421–32.

Castilho AL, Caleffi-Ferracioli KR, Canezin PH, Siqueira VLD, de Lima Scodro RB, Cardoso RF. Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay. J Microbiol Methods. 2015;111:119–21.

Muanza DN, Kim BW, Euler KL, Williams L. Antibacterial and antifungal activities of nine medicinal plants from Zaire. Int J Pharmacogn. 1994;32(4):337–45.

Golus J, Sawicki R, Widelski J, Ginalska G. The agar microdilution method–a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol. 2016;121(5):1291–9.

Molecular Operating Environment (MOE), 2022.02 Chemical Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, QC H3A 2R7, Canada, 2024.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci.

Zhao Y, Schultz NE, Truhlar DG. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput. 2006;2(2):364–82.

Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–46.

Cameron DR. Computer software reviews. J Am Chem Soc. 2001;123(35):8644–8645.

Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36(22):3219–28.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

Ahsan MJ, Samy JG, Khalilullah H, Nomani MS, Saraswat P, Gaur R, Singh A. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorganic Med Chem Lett. 2011;21(24):7246–50.

Mazumdera J, Chakraborty R, Sena S, Vadrab S, Dec B, Ravi TK. Synthesis and biological evaluation of some novel quinoxalinyl triazole derivatives. Der Pharma Chem. 2009;1(2):188–98.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–72.

CLSI. Performance Standards for Antimicrobial susceptibility Testing, 30th Edition. CLSI Doc M100. 2020;

Thai NM, Bui TQ, Quy PT, Thanh Hai NT, To DC, Quang DT, Co NQ, Triet NT, Ai Thuan NT, To Nhi NT, Tham VM, Ai Nhung NT. Potentiality of organosulfur compounds against SARS-CoV-2-coinfected bacteria S pyogenes and S pneumoniae: A cross-platform analysis from computational chemistry. Nat Prod Commun. 2023;18(8):1–23.

Van Hue N, Cuong TD, Quy PT, Bui TQ, Hai NTT, Triet NT, Thanh DD, Nhi NTT, Thai NM, Van Chen T, Nhung NTA. Antimicrobial properties of Distichochlamys citrea M.F. Newman rhizome n-hexane extract

against Streptococcus pyogenes: experimental evidences and computational screening. ChemistrySelect. 2022;7(17).

Feynman R. The Feynman lectures on physics - Volume II. Millenium. Gottlieb MA, editor. New York: Basic Books; 2010. 11.3. ss