UPLC-MS/MS Analysis and Evaluation of the Photoprotective, Antioxidant, Anti-Inflammatory and Anti-Enzymatic Properties of Ethyl Acetate and n-Butanol Fractions from Algerian Juniperus oxycedrus L. Leaves
Main Article Content
Abstract
Juniperus oxycedrus is prevalent in the arid and semi-arid regions of the Mediterranean and Near East and, is traditionally employed for both culinary and medicinal applications. This research evaluates the potential health benefits of ethyl acetate (EAJO) and n-butanol (NBJO) fractions derived from leaves. Quantitative analysis revealed enhanced concentrations of phenolic and flavonoid compounds in the EAJO fraction at 252.56 ± 3.91 mg GAE/g DW and 47.70 ± 2.21 mg QE/g DW, respectively. UPLC-ESI-MS/MS identified a rich array of twelve phenolic acids and flavonoids, with rutin and chrysin identified as the predominant compounds in both fractions. Comprehensive antioxidant assessments through seven distinct assays demonstrated strong properties, with most activities displaying an IC50 values under 30 µg/mL. Additionally, in vitro anti-inflammatory activity showed that the EAJO and NBJO fractions effectively inhibited albumin denaturation at different concentrations, indicating a moderate effect compared to the standard drug diclofenac sodium. EAJO fraction surpassed NBJO in inhibiting key enzymes associated with Alzheimer’s disease, diabetes, hyperpigmentation, dermatological disorders, and select bacterial infections, evidenced by IC50 values for acetylcholinesterase, alpha-amylase, tyrosinase, and urease with IC50 values of 14.60 ± 0.98 μg/mL, 639.48 ± 7.43 μg/mL, 206.44 ± 18.48 μg/mL, and 245.77 ± 3.75 μg/mL, respectively. Both fractions also displayed promising photoprotective properties, with SPF ratings of 31.71 ± 0.31 for NBJO and 22.62 ± 1.52 for EAJO. This study highlights the significant potential of Juniperus oxycedrus in the development of pharmaceutical, cosmetic, and nutritional products, underlining its substantial bioactive profile with antioxidant, anti-inflammatory, anti-enzymatic, and photoprotective capabilities.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ullah Z, Shad AA, Fahim M. In vitro antioxidant, anti-cholinesterase inhibitory, and antimicrobial activity studies of Terminalia chebula (Retz) and Terminalia arjuna (Roxb). S Afr J Bot. 2021; 146(8): 395–400. https://doi.org/10.1016/j.sajb.2021.11.016.
World Health Organization. National policy on traditional medicine and regulation of herbal medicines. Report of a WHO global survey World Health Organization. WHO Libr Cat Data Natl. 2005;(May). ISBN: 92415932373.
Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. J Funct Foods. 2015; 18(10):820-897. https://doi.org/10.1016/j.jff.2015.06.018
Napagoda MT, Malavi B, Shamila A. Photoprotective potential in some medicinal plants used to treat skin diseases in Sri Lanka. BMC Complement Altern Med. 2016; 24(1):1–6. https://doi.org/10.1186/s12906-016-1455-8
Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019; 24(22): 14–6. https://doi.org/10.3390/molecules24224132.
Jeong SH, Kim BY, Kang HG, Ku HO, Cho JH. Effects of butylated hydroxyanisole on the development and functions of the reproductive system in rats. Toxicology. 2005; 208(1): 49–62. https://doi.org/10.1016/j.tox.2004.11.014
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in the reduction of oxidative stress. BioFactors. 2022; 48(3): 611–33. https://doi.org/ 10.1002/biof.1831
Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J. Functional food science and defence against reactive oxidative species. Br J Nutr. 1998; 80(S1): 77–112. https://doi.org/10.1079/bjn19980106
Chouala K, Boudjema K, Khelef Y, Nani S, Ouali K, Boumendjel M, Boumendjel A, Messarah M. Antioxidant compounds from the Arthrospira platensis protect against Bisphenol A-induced nephrotoxicity in rats. J. Toxicol. Environ. Health Sci. 2024; https://doi.org/10.1007/s13530-023-00203-7
Zadam MH, Ahmida M, Djaber N, Ounacer LS, Sekiou O, Taibi F, Bencheikh R, Chouala K, Boudjema K, Tichati L, Zaafour M, Boumendjel A, Messarah M, Boumendjel M. In-vivo anti-inflammatory effects of Roman Chamomile (Chamaemelum nobile) aqueous extracts collected from the National Park of El-Kala (North-East, Algeria). Cell Mol Biol (Noisy-le-grand). 2023; 69(9): 245-254. https://doi.org/10.14715/cmb/2023.69.9.38
Djaber N, Ounaceur LS, Moubine BN, Khaldi T, Rouag M, Berrouague S, Amara H, Taibi F, Boumendjel M, Boumendjel A, Messarah M. Roundup-induced biochemical and histopathological changes in the liver and kidney of rats: the ameliorative effects of Linum usitatissimum oil. Acta Biochim Pol. 2020; 67(1):53-64. https://doi.org/ 10.18388/abp.2020_2898.
Rouag M, Berrouague S, Djaber N, Khaldi T, Boumendjel M, Taibi F, Abdennour C, Boumendjel A, Messarah M. Pumpkin seed oil alleviates oxidative stress and liver damage induced by sodium nitrate in adult rats: biochemical and histological approach. Afr Health Sci. 2020; 20(1):413-425. https://doi.org/10.4314/ahs.v20i1.48.
Rouibah Z, Ben Mensour A, Rekik O, Boumendjel M, Taibi F, Bouaziz M, El Feki A, Messarah M, Boumendjel A. Chemical composition, antioxidant activities, in an allergic asthma model, of Olea europaea L. leaf extracts from Collo (Skikda, Algeria). Drug Chem Toxicol. 2022; 45(1):197-208. https://doi.org/10.1080/01480545.2019.1679827.
Zemmouri H, Sekiou O, Ammar S, El Feki A, Bouaziz M, Messarah M, Boumendjel A. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharm Biol. 2017; 55(1):1561-1568. https://doi.org/10.1080/13880209.2017.1310905.
Küpeli EA, Güvenç A, Yesilada E. A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa. J Ethnopharmacol. 2009; 125(2):330–6. https://doi.org/10.1016/j.jep.2009.05.031
Chaouche TM, Haddouchi F, Atik-Bekara F, Ksouri R, Azzi R, Boucherit Z, Tefiani C, Larbat R. Antioxidant, haemolytic activities and HPLC-DAD-ESI-MSn characterisation of phenolic compounds from the root bark of Juniperus oxycedrus subsp. oxycedrus. Ind Crops Prod. 2015; 64(1): 182–7. https://doi.org/10.1016/j.indcrop.2014.10.051
Orhan N. Juniperus Species: Features, Profile and Applications to Diabetes. Bioactive Food as Dietary Interventions for Diabetes. Elsevier Inc. 2019; 447–459. https://doi.org/10.1016/B978-0-12-813822-9.00030-8
Ninich O, Et-tahir A, Kettani K, Ghanmi M, Aoujdad J, El Antry S, Ouajdi M, Satrani B. Plant sources, techniques of production and uses of tar: A review. J Ethnopharmacol. 2022; 285(1): 114889. https://doi.org/10.1016/j.jep.2021.114889
Meringolo L, Bonesi M, Sicari V, Rovito S, Passalacqua NG, Loizzo MR, Tundi R. Essential Oils and Extracts of Juniperus macrocarpa Sm. and Juniperus oxycedrus L: Comparative Phytochemical aomposition and anti-proliferative and antioxidant activities. Plants (Basel). 2022; 11(8): 1025. https://doi.org/10.3390/plants11081025
El Jemli M, Kamal R, Marmouzi I, Zerrouki A, Cherrah Y, Alaoui K. Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera, Juniperus oxycedrus, Juniperus phoenicea and Tetraclinis articulata. Adv Pharmacol Sci. 2016; 2016:6392656. https://doi.org/10.1155/2016/6392656
Djellouli S, Larbi KS, Meddah B, Rebiai A. Chemical composition, in vitro antioxidant and anti-inflammatory activities of Juniperus oxycedrus subsp. oxycedrus extracts from Algeria. Eur J Biol Res. 2022; 12(3): 271–81. http://dx.doi.org/10.5281/zenodo.7135281
Loizzo MR, Saab AM, Tundis R, Statti GA, Menichimi F, Lampronti I, Gambari R, Cinatl J, Doerr HW. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008; 5(3): 461–70. https://doi.org/10.1002/cbdv.200890045n
Orhan N, Aslan M, Demirci B, Ergun F. A bioactivity guided study on the antidiabetic activity of Juniperus oxycedrus subsp. oxycedrus L. leaves. J Ethnopharmacol. 2012; 140(2): 409–15. https://doi.org/10.1016/j.jep.2012.01.042.
Loizzo MR, Tundis R, Conforti F, Saab AM, Statti GA, Menichini F. Comparative chemical composition, antioxidant and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and wood oils from Lebanon. Food Chem. 2007; 105(2):572–8. https://doi.org/10.1016/j.foodchem.2007.04.015
El-Abid H, Amaral C, Cunha SC, Augusto T V., Fernandes JO, Correia-da-Silva G, Teixeira AN, Moumni M. Chemical composition and anti-cancer properties of Juniperus oxycedrus L. essential oils on estrogen receptor-positive breast cancer cells. J Funct Foods. 2019; 59(3):261–71. https://doi.org/10.1016/j.jff.2019.05.042
Orhan N, Orhan IE, Ergun F. Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem Toxicol. 2011; 49(9):2305–12. https://doi.org/10.1016/j.fct.2011.06.031
Singleton VL, Rossi JA. Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16(3):144-58. https://doi.org/10.5344/ajev.1965.16.3.144
Topçu G, Ay M, Bilici A, Sarikürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007; 103(3):816–22. https://doi.org/10.1016/j.foodchem.2006.09.028
Blois MS. Antioxidant determinations by the use of a stable free radical. Nat. 1958; 181(4617):1199–200. https://doi.org/10.1038/1811199a0
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic Biol Med. 1999; 26(9-10):1231-7. https://doi.org/10.1016/s0891-5849(98)00315-3
Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6): 307315. https://doi.org/10.5264/eiyogakuzashi.44.307
Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004; 52(26):7970–81. https://doi.org/10.1021/jf048741x
Özyürek M, Güngör N, Baki S, Güçlü K, Apak R. Development of a Silver Nanoparticle-Based Method for the Antioxidant Capacity Measurement of Polyphenols. Anal Chem. 2012; 84(18):8052-9. https://doi.org/10.1021/ac301925b
Shi H, Noguchi N, Niki E. Galvinoxyl method for standardising electron and proton donation activity. Methods Enzymol. 2001; 335:157-66. https://doi.org/10.1016/s0076-6879(01)35240-0
Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008; 76(4):899–905. https://doi.org/10.1016/j.talanta.2008.04.055
Karthik K, Kumar P, Rathore RSB. Evaluation of the anti-inflammatory activity of Canthium parviflorum by in vitro method. Indian J Res Pharm Biotec. 2013; 5674(10): 2320–2.
Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R, Ceylan O. A comprehensive study on phytochemical characterisation of Haplophyllum myrtifolium Boiss. Endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer's, skin diseases and type II diabetes. Ind Crops Prod. 2014; 53:244–51. https://doi.org/10.1016/j.indcrop.2013.12.043
Deveci E, Tel-çayan G, Duru ME. Phenolic profile, antioxidant, anti-cholinesterase, and anti-tyrosinase activities of the various extracts of ferula elaeochytris and sideritis stricta. Int J Food Prop. 2018; 21(1):771–83. https://doi.org/10.1080/10942912.2018.1431660
Taha M, Ullah H, AlMuqarrabun LMR, Khan MN, Rahim F, Ahmat N, avid MT, Ali M, Khan KM. Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modelling studies. Bioorganic Med Chem. 2018; 26(1):152–60. https://doi.org/10.1016/j.bmc.2017.11.028
Mansur, JS, Breder MNR, Mansur MCA, Azulay RD. Determination of sun protection factor by spectrophotometry. An Bras Dermatol. 1986; (61):121-124.
Bhoooshan PK, Ibrahim RS. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009; 5(2):270–8. https://doi.org/10.4161/oxim.2.5.9498
Chaouche TM, Haddouchi F, Ksouri R, Medini F, Atik-Bekara F. In vitro evaluation of the antioxidant activity of the hydro-methanolic extracts of Juniperus oxycedrus subsp. oxycedrus. Phytother. 2013; 11(4):244–9. https://doi.org/10.1007/s10298-013-0779-5
Fadel H, Benayache F, Benayache S. Antioxidant properties of four Algerian medicinal and aromatic plants Juniperus oxycedrus L., Juniperus phoenicea L., Marrubium vulgare L. Der Pharmacia Lettre. 2016; 8(3): 72-79.
Ben Mrid R, Bouchmaa N, Bouargalne Y, Ramdan B, Karrouchi K, Kabach I, El Karbane M, Idir A, Zyad A, Nhiri M. Phytochemical characterisation, antioxidant and in Vitro cytotoxic activity evaluation of Juniperus oxycedrus Subsp. oxycedrus needles and berries. Molecules. 2019; 24(3):502. https://doi.org/10.3390/molecules24030502
Yaglioglu AS, Eser F. Screening of some Juniperus extracts for the phenolic compounds and their anti-proliferative activities. S Afr J Bot. 2017; 113: 29–33. https://doi.org/10.1016/j.sajb.2017.07.005
Er Kemal M, Bakchiche B, Kemal M, Cheraif K, Kara Y, Bardaweel SK, Miguel MG, Yildiz O, Ghareeb M. Six Algerian plants: Phenolic profile, antioxidant, antimicrobial activities associated with different simulated gastrointestinal digestion phases and anti-proliferative properties. J Herb Med. 2023; 38(2):100636. https://doi.org/10.1016/j.hermed.2023.100636
Chaabna N, Naili O, Ziane N, Bensouici C, Dahamna DH, Harzallah D. In vitro Antioxidant, anti-Alzheimer and Antibacterial Activities of Ethyl acetate and n-Butanol Fractions of Punica granatum Peel from Algeria. Trop J Nat Prod Res. 2023; 7(7):3470–7. https://doi.org/10.26538/tjnpr/v7i7.27
Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxid Med Cell Longev. 2018; 2018:62410. https://doi.org/10.1155/2018/6241017
Sharma S, Ali A, Ali J, Sahni JK, Baboota S. Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs. 2013; 22(8):1063-79. https://doi.org/ 10.1517/13543784.2013.805744
Mishra A, Mishra PS, Bandopadhyay R, Khurana N, Angelopoulou E, Paudel YN, Piperi C. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules. 2021; 26(21):1–20. https://doi.org/10.3390/molecules26216456
Oršolić N, Nemrava J, Jeleč Ž, Kukolj M, Odeh D, Jakopović B, Jazvinšćak Jembrek M, Bagatin T, Fureš R, Bagatin D. Antioxidative and Anti-Inflammatory Activities of Chrysin and Naringenin in a Drug-Induced Bone Loss Model in Rats. Int J Mol Sci. 2022; 23(5):2872. https://doi.org/10.3390/ijms23052872
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019; 24(6):1123. https://doi.org/10.3390/molecules24061123
Itagaki S, Kurokawa T, Nakata C, Saito Y, Oikawa S, Kobayashi M, Hirano T, Iseki K. In vitro and in vivo antioxidant properties of ferulic acid: A comparative study with other natural oxidation inhibitors. Food Chem. 2009; 114(2):466–71. https://doi.org/10.1016/j.foodchem.2008.09.073
Mouffouk C, Mouffouk S, Oulmi K, Mouffouk S, Haba H. In vitro photoprotective, hemostatic, anti-inflammatory and antioxidant activities of the species Linaria scariosa Desf. S Afr J Bot. 2020; 130:383–8. https://doi.org/10.1016/j.sajb.2020.01.003
Grossberg GT, Desai AK. Management of Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2003; 58(4):331–53. https://doi.org/10.1093/gerona/58.4.m331
Bonesi M, Menichini F, Tundis R, Loizzo MR, Conforti F, Passalacqua NG, Statti GA, Menichini F. Acetylcholinesterase and butyrylcholinesterase oils and their constituents. J Enzyme Inhib Med Chem. 2010; 25(5):622–8. https://doi.org/10.3109/14756360903389856
Palmer AM. Neuroprotective therapeutics for Alzheimer's disease: Progress and prospects. Trends Pharmacol Sci. 2011; 32(3):141–7. https://doi.org/10.1016/j.tips.2010.12.007
Cheraif K, Bakchiche B, Gherib A, Bardaweel SK, Çol Ayvaz M, Flamini G, Ascrizzi R, Ghareeb MA. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules. 2020; 25(7):1710. https://doi.org/10.3390/molecules25071710
Öztürk M, Tümen I, Uǧur A, Aydoǧmuş-Öztürk F, Topçu G. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anti-cholinesterase and antimicrobial activities. J Sci Food Agric. 2011;91(5):867–76. https://doi.org/10.1002/jsfa.4258
Tavares L, McDougall GJ, Fortalezas S, Stewart D, Ferreira RB, Santos CN. The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chem. 2012; 135(2):562–70. https://doi.org/10.1016/j.foodchem.2012.05.023
Phadke AV., Tayade AA, Khambete MP. Therapeutic potential of ferulic acid and its derivatives in Alzheimer's disease—A systematic review. Chem Biol Drug Des. 2021; 98(5):713–21. https://doi.org/10.1111/cbdd.13922
Habtemariam S, Lentini G. The Therapeutic Potential of Rutin for Diabetes: An Update. Mini Rev Med Chem. 2015; 15(7): 524–8. https://doi.org/10.2174/138955751507150424103721
Sekiou O, Boumendjel M, Taibi F, Boumendjel A, Messarah M. Mitigating effects of antioxidant properties of Artemisia herba alba aqueous extract on hyperlipidemia and oxidative damage in alloxan-induced diabetic rats. Arch Physiol Biochem. 2019; 125(2):163-173. https://doi.org/10.1080/13813455.2018.1443470
Mahmood N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological states such as obesity and diabetes. Comp Clin Path. 2016; 25(6):1253–64. https://doi.org/10.1007/s00580-014-1967-x
Oboh G, Ademosun AO, Ayeni PO, Omojokun OS, Bello F. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comp Clin Path. 2015; 24(5):1103–10. https://doi.org/10.1007/s00580-014-2040-5
Souilah N, Bendif H, Ullah Z, Hamel T. Lc-ms/ms simultaneous determination of 37 bioactive compounds in bunium crassifolium batt. And its biological activities. J Res Pharm. 2021;25(4):450–63. https://doi.org/10.29228/jrp.36
Zaidi SF, Muhammad JS, Shahryar S, Usmanghani K, Gilani AH, Jafri W, Sugiyama T. Anti-inflammatory and cytoprotective effects of selected Pakistani medicinal plants in Helicobacter pylori-infected gastric epithelial cells. J Ethnopharmacol. 2012; 141(1):403–10. https://doi.org/10.1016/j.jep.2012.03.001
Qanash H, Al-Rajhi AMH, Almashjary MN, Basabrain AA, Hazzazi MS, Abdelghany TM. Inhibitory potential of rutin and rutin nano-crystals against Helicobacter pylori, colon cancer, hemolysis and butyrylcholinesterase in vitro and in silico. Appl Biol Chem. 2023; 66(1). https://doi.org/10.1186/s13765-023-00832-z
Mishra AK, Mishra A, Chattopadhyay P. Herbal cosmeceuticals for photoprotection from ultraviolet B radiation: A review. Trop J Pharm Res. 2011; 10(3):351–60. https://doi.org/10.4314/tjpr.v10i3.7
Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Charati JY. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran J Pharm Res. 2014; 13(3):1041–8.
Saewan N, Jimtaisong A. Photoprotection of natural flavonoids. J App Pharm Sci. 2013; 3(9):129–41. https://doi.org/10.7324/JAPS.2013.3923
Stevanato R, Bertelle M, Fabris S. Photoprotective characteristics of natural antioxidant polyphenols. Regul Toxicol Pharmacol. 2014; 69(1):71–7. https://doi.org/10.1016/j.yrtph.2014.02.014
Freitas JV, Gaspar LR. In vitro photo safety and efficacy screening of apigenin, chrysin and beta-carotene for UVA and VIS protection. Eur J Pharm Sci. 2016; 89: 146–53. https://doi.org/10.1016/j.ejps.2016.04.032
Telaidji AN. Chemical characterisation and biological activity (in vitro and in vivo) of the methanolic extract of Juniperus phoenicea L. [Master's thesis]: University of Brother Mentouri Constantine; 2018; 56-57p.