Glucogallin and Conjugated Linoleic Acids Isolated from Ricinodendron heudelotii (Bail.) Seeds
Main Article Content
Abstract
In a bid to explore and enhance the use of natural products for medicinal purposes, this study analyzed the crude extract of Ricinodendron heudelotii seeds and isolated four biologically active compounds from ethyl acetate fraction of R. heudelotii seeds extract. The study utilized GC-MS in the analysis of the crude extract. Various spectroscopic and spectrometric methods in addition to reported data were employed in characterizing isolates. Twenty-two compounds were detected in the crude extract via GC-MS. Palmitic acid had the highest abundance of 23.9%, followed by α-linolenic acid (14.72%). The ethyl acetate fraction by means of chromatographic techniques yielded four compounds namely glucogallin (1), (6Z,9Z,11Z)-6,9,11-octadecatrienoic acid (2), (6Z,9E,11E)-6,9,11-octadecatrienoic acid (3) and (6Z,9Z,13Z)-6,9,13-octadecatrienoic acid (4). All four isolated compounds have biological and pharmaceutical properties including anti-inflammatory and anti-diabetic. This study, therefore, proposes linolenic acid and gallic acid derivatives as chemophenetic markers of R. heudelotii and suggests the medicinal use of R. heudelotii seeds for anti-inflammatory and anti-diabetic disorders.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227-235.
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017; 9(6), 7204–7218.
Signore A. About inflammation and infection. EJNMMI Res. 2013;3(1):8. doi: 10.1186/2191-219X-3-8. PMID: 23374699; PMCID: PMC3564704.
American Diabetes Association. Diagnosis and classification of diabetes mellitus [published correction appears in Diabetes Care. 2010;33(4): e57]. Diabetes Care. 2010;33 Suppl 1(Suppl 1): S62-S69.
Inzucchi SE. Diagnosis of diabetes. N Engl J Med. 2013; 368:193.
Alzamil H. "Elevated Serum TNF-α Is Related to Obesity in Type 2 Diabetes Mellitus and Is Associated with Glycemic Control and Insulin Resistance", J. Obes. , 2020, Article ID 5076858, 1-5.
Rehman K. Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016; 23, 87.
Odinga T, Nwaokezi CO. Effect of Ricinodendron heudelotii seed extract on the oxidative stress biomarkers of Diabetic albino rats. J. Pharm. Res, 2020; 11-1905.
Marques-Vidal P, Schmid R, Bochud M, Bastardot F, Von Känel R, Paccaud F, Glaus J, Preisig M, Waeber G, Vollenweider P. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. the CoLaus study. PLoS One. 2012;7(12): e51768.
Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. cardiol., 2019; 14(1), 50–59.
Odinga T, Worlu-Wodu QE, Deekae S. Bioprospective screening of Ricinodendron heudelotii seeds. J. Anal. Pharm. Res, 2016; 3(10); 00084-92
Yakubu OF, Adebayo AH, Dokunmu TM, Zhang YJ, Iweala E. Cytotoxic Effects of Compounds Isolated from Ricinodendron heudelotii. Molecules, 2019; 24(1), 145.
Salsinha AS, Pimentel LL, Fontes AL, Gomes AM, Rodríguez-Alcalá LM. Microbial Production of Conjugated Linoleic Acid and Conjugated Linolenic Acid Relies on a Multienzymatic System. Microbiol Mol Biol Rev. 2018;82(4): e00019-18.
Ngo Njembe MT, Dormal E, Gardin C, Mignolet E, Debier C, Larondelle Y. Effect of the dietary combination of flaxseed and Ricinodendron heudelotii or Punica granatum seed oil on the fatty acid profile of eggs. Food Chem. 2021; 344:128668.
Ezekwe MO, Samuel AB, Ramon J. Nutritive composition of omega-3 fatty acids-rich Ricinodendron heudelotii and its potential for nutrition. Inter. J. nutr. Met., 2014; 6(6), 56-62.
Odinga T, Yousuf S, Choudhary MI, Ndukwe GI, Obinna PC, Otobo MB, Nwokogba CC. (2023). Bioactive Components, Anti-Dengue and Insecticidal Potencies of Ricinodendron heudelotii (Baill.) Seed Oil. Int. J. Med. Plant. Nat. Prod. 2023; 9(1); 6-13.
Zidorn C. Plant chemophenetics - A new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry. 2019; 163:147-148. doi: 10.1016/j.phytochem. 2019.02.013. Epub, PMID: 30846237.
Teoh ES. Secondary Metabolites of Plants. Medicinal Orchids of Asia. 2015; 5:59–73.
Borenstein E, Kupiec M, Feldman MW, Ruppin E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A. 2008;105(38):14482-14487.
Akesa TM. Phytotaxonomy and phytochemicals of Eight species of the Family Moraceae in Benue State, Nigeria. Int. J. Sci. Engr. Res., 2016; 7, 588.
Ntie-Kang F, Lifongo L. L, Mbaze LM, Ekwelle N, Owono Owono LC., Megnassan E, Judson PN, Sippl W, Efange SM. Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complement Altern Med. 2013; 13:147.
Khan AN, Singh R, Bhattacharya A, Chakravarti R, Roy S, Ravichandiran V, Ghosh DA. Short Review on Glucogallin and its Pharmacological Activities. Mini Rev Med Chem. 2022;22(22):2820-2830. doi: 10.2174/1389557522666220513150907. PMID: 35570562.
Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV. The Isolation and Characterization of β-Glucogallin as a Novel Aldose Reductase Inhibitor from Emblica officinalis. PLoS ONE, 2012; 7(4): e31399.
Ahmad S, Pandey AR, Singh SP, Singh S, Sashidhara KV, Tamrakar AK. Antiglycation activity of β-glucogallin from Asparagus racemosus. Nat Prod Res. 2022;36(24):6329-6335.
William W. Christie, Xianlin Han, Chapter 1 - Lipids: their structures and occurrence, Editor(s): William W. Christie, Xianlin Han, In Oily Press Lipid Library Series, Lipid Analysis (Fourth Edition), Woodhead Publishing, 2012, 3-19, ISBN 9780955251245.
Białek M, Rutkowska J. The importance of γ-linolenic acid in the prevention and treatment. Adv. Hyg. Exp. Med. 2015; 69:892–904.
Timoszuk M, Bielawska K, Skrzydlewska E. Evening Primrose (Oenothera biennis) Biological Activity Dependent on Chemical Composition. Antioxidants (Basel). 2018;7(8):108-119
Odinga T, Yousuf S, Muhammad CI, Ndukwe IG, Otobo MB, Lemii BC, Enebeli SK, Edward UF. Evaluation of the in-vitro biological activities of the seed extract of Ricinodendron heudelotii. Trends in Med. Res., 2024, 19(2): 1-12.
Senapati S, Sabyasachi B, Gangopadhyay DN. Evening primrose oil is effective in atopic dermatitis: A randomized placebo-controlled trial. Indian J. Dermatol. Venereol. Leprol. 2008; 74:447–452.
Białek A, Teryks M, Tokarz A. Sprzężone trieny kwasu linolenowego (conjugated linolenic acid–CLnA, super CLA)–źródła i działanie biologiczne [Conjugated linolenic acids (CLnA, super CLA)--natural sources and biological activity]. Postepy higieny i medycyny doswiadczalnej (Online), 2014; 68, 1238–1250.
Yuan GF, Chen XE, Li D. Conjugated linolenic acids and their bioactivities: a review. Food func., 2014; 5(7), 1360–1368.
Fontes AL, Pimentel LL, Simões CD, Gomes A, Rodríguez-Alcalá LM. Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods. Critical rev. food sci. nutria., 2017; 57(12), 2611–2622.
Hennessy AA, Ross RP, Devery R, Stanton C. The health promoting properties of the conjugated isomers of α-linolenic acid. Lipids, 2011; 46(2), 105–119.
Gasmi J, Thomas Sanderson J. Jacaric acid and its octadecatrienoic acid geoisomers induce apoptosis selectively in cancerous human prostate cells: a mechanistic and 3-D structure-activity study. Phytomed.: int. j. phytother. phytopharm, 2013; 20(8-9), 734–742.
Gómez-Cortés P, Tyburczy C, Brenna JT, Juárez M, de la Fuente MA. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS. J Lipid Res. 2009;50(12):2412-2420.