Biochemical And Triglyceride-Glucose Index (Tyg) Profile In High Doses Streptozotocin-Nicotinamide Produce Diabetes Mellitus In Rats Model

Main Article Content

Heru Sasongko
Abdul Rohman
Arief Nurrochmad
Agung E. Nugroho

Abstract

Preclinical test is a stage in evaluating potential drug candidates for diabetes mellitus (DM). However, developing an animal model that accurately replicates the various pathophysiological and etiological aspects of DM as seen in humans presents significant challenges. To induce diabetes, streptozotocin (STZ) in single doses or combination with nicotinamide (NIC) is often used. Treating diabetes conditions has a low success rate, compounded by the complexity of numerous affected biochemical profiles, presenting a significant research challenge. Therefore, this research aimed to determine the biochemical and triglyceride-glucose index (TyG) profile in high doses of STZ-NIC-induced diabetes in the rat model. The population consisted of 18 rates divided into three groups, each containing six. Group I (the normal group) consisted of healthy rats who were given standard feed and drink. In groups II and III, diabetes was induced intraperitoneally with 50 and 65 mg/kg of STZ in addition to 230 mg/kg of NIC. Observations were made for 6 weeks after the rats were diagnosed with diabetes having blood glucose levels of ≥ 250 mg/dL 72 hours after STZ-NIC induction. The data were evaluated statistically by one-way analysis of variance (ANOVA), followed by the least significant difference (LSD) test (p ≤ 0.05). The result showed significant differences in blood biochemistry, specifically in the parameters of blood glucose, SGPT, and SGOT with increasing doses of STZ-NIC (p<0.05), but not in total cholesterol, triglycerides, albumin, total protein, and TyG ( p<0.05). The high doses of STZ-NIC administration can produce DM models with different blood biochemical profiles but not in TyG.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sasongko, H., Rohman, A., Nurrochmad, A., & Nugroho, A. E. (2024). Biochemical And Triglyceride-Glucose Index (Tyg) Profile In High Doses Streptozotocin-Nicotinamide Produce Diabetes Mellitus In Rats Model. Tropical Journal of Natural Product Research (TJNPR), 8(6), 7499-7503. https://doi.org/10.26538/tjnpr/v8i6.25
Section
Articles

How to Cite

Sasongko, H., Rohman, A., Nurrochmad, A., & Nugroho, A. E. (2024). Biochemical And Triglyceride-Glucose Index (Tyg) Profile In High Doses Streptozotocin-Nicotinamide Produce Diabetes Mellitus In Rats Model. Tropical Journal of Natural Product Research (TJNPR), 8(6), 7499-7503. https://doi.org/10.26538/tjnpr/v8i6.25

References

Sasongko H, Lestari R, Yugatama A, Farida Y, Farida Y, Farida Y. Antidiabetic and Antioxidant Effect Combination Vasconcellea pubescens A.DC. and Momordica charantia L. Extract in Alloxan- Induced Diabetic Rats. Phcogj. 2020;12(2):311-315. doi:10.5530/pj.2020.12.49

Goenawan H, Pratiwi YS, Dewi NP, Achadiyani A, Sylviana N. Beneficial Effect of Lycopene on Diabetes Mellitus and its Possible Mechanism: A Review: Trop J. Pharm Res; 2021;5(3):420-433. doi.org/10.26538/tjnpr/v5i3.2

Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Biochemical characterization of high-fat diet-fed and low dose streptozotocin-induced diabetic Wistar rat model. J Pharmacol Toxicol Methods. 2022;113:107144. doi:10.1016/j.vascn.2021.107144

Valic MS, Halim M, Schimmer P, Zheng G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release; 2020;323:83-101. doi:10.1016/j.jconrel.2020.04.002

Kottaisamy CPD, Raj DS, Prasanth Kumar V, Sankaran U. Experimental animal models for diabetes and its related complications—a review. Lab. Anim. Res. 2021;37(1):23. doi:10.1186/s42826-021-00101-4

Rodrigues PV, Lemos BM, da Silva MV, de Campos Lima T, de Oliveira Santos D, Lemes JB, da Cruz Lotufo CM. Alloxan as a better option than streptozotocin for studies involving painful diabetic neuropathy. J Pharmacol Toxicol Methods. 2021;112:107090. doi:10.1016/j.vascn.2021.107090

Sasongko H, Nurrochmad A, Rohman A, Nugroho AE. Characteristic of Streptozotocin-Nicotinamide-Induced Inflammation in A Rat Model of Diabetes-Associated Renal Injury. Open Access Maced. J. Med. Sci. 2022;10(T8):16-22.

Aamir K, Khan HU, Hossain CF, Afrin MR, Jusuf PR, Waheed I, Sethi G, Arya A. Arjunolic acid downregulates elevated blood sugar and pro-inflammatory cytokines in streptozotocin (STZ)-nicotinamide-induced type 2 diabetic rats. Life Sci. 2022;289:120232. doi:10.1016/j.lfs.2021.120232

Cruz PL, Moraes-Silva IC, Ribeiro AA, Machi JF, de Melo MD, Dos Santos F, da Silva MB, Strunz CM, Caldini EG, Irigoyen MC. Nicotinamide attenuates streptozotocin-induced diabetes complications and increases survival rate in rats: role of autonomic nervous system. BMC Endocr. Disord. 2021;21(1):133. doi:10.1186/s12902-021-00795-6

Kumar A, Semwal R, Chauhan A, Semwal RB, Chandra S, Sircar D, Roy P, Semwal DK. Evaluation of the antidiabetic effect of Cissampelos pareira L. (Menispermaceae) root extract in streptozotocin-nicotinamide-induced diabetic rats via targeting SGLT2 inhibition. Phytomed Plus. 2022;2(4):100374. doi:10.1016/j.phyplu.2022.100374

Simental-Mendía LE, Guerrero-Romero F. The correct formula for the triglycerides and glucose index. Eur J Pediatr. 2020;179(7):1171-1171. doi:10.1007/s00431-020-03644-1

Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G. Experimental NIDDM: Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide. Diabetes. 1998;47(2):224-229. doi:10.2337/diab.47.2.224

Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes. 2015; 8:181-188.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-226. doi:10.1007/s00125-007-0886-7

Szkudelski T. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237(5):481-490. doi:10.1258/ebm.2012.011372

Yan LJ. The Nicotinamide/Streptozotocin Rodent Model of Type 2 Diabetes: Renal Pathophysiology and Redox Imbalance Features. Biomol. 2022;12(9):1225. doi:10.3390/biom12091225

Ventura-Sobrevilla J, Boone-Villa VD, Aguilar CN, et al. Effect of varying dose and administration of streptozotocin on blood sugar in male CD1 mice. Proc West Pharmacol Soc. 2011;54:5-9.

Ahmad W, Khan I, Khan MA, Ahmad M, Subhan F, Karim N. Evaluation of antidiabetic and antihyperlipidemic activity of Artemisia indica Linn (aerial parts) in Streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2014;151(1):618-623. doi:10.1016/j.jep.2013.11.012

Singh P, Khosa RL, Mishra G, Jha KK. Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice. J Pharm Bioallied Sci. 2015;7(4):289-292. doi:10.4103/0975-7406.168028

Uly N, Yuniastuti A, Susanti R, Tursinawati Y. Improvement of Insulin Secretion and Pancreatic β-Cell Function in Streptozotocin-induced Diabetic Rats Treated with Dioscorea esculenta Extract: Trop J. Pharm Res. 2023;7(11):5050-5054. http://www.doi.org/10.26538/tjnpr/v7i11.6.

Raval KY, Tirgar PR. A pre-clinical study to investigate the anti-diabetic potential of p-propoxybenzoic acid as a multi-target inhibitor in streptozotocin-nicotinamide-induced type-2 diabetic rats. J Diabetes Metab Disord. 2022; 22: 571–580. doi:10.1007/s40200-022-01177-y

Sharma M, Chan HK, Lavilla Jr CA, Uy MM, Froemming GRA, Okechukwu PN. Induction of a Single Dose of Streptozotocin (50 Mg) in Rat Model Causes Insulin Resistance with Type 2 Diabetes Mellitus. Fundam Clin Pharmacol. 2023; 37(4): 769-778. doi.org/10.1111/fcp.12892

Cam ME, Hazar-Yavuz AN, Yildiz S, Ertas B, Adakul BA, Taskin T, Alan S, Kabasakal L. The methanolic extract of Thymus praecox subsp. skorpilii var. skorpilii restores glucose homeostasis, ameliorates insulin resistance, and improves pancreatic β-cell function in streptozotocin/nicotinamide-induced type 2 diabetic rats. J. Ethnopharmacol. 2019;231:29-38. doi:10.1016/j.jep.2018.10.028

Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13(1):1-10.

Piché MÉ, Arcand-Bossé JF, Després JP, Pérusse L, Lemieux S, Weisnagel SJ. What is a normal glucose value? Differences in indexes of plasma glucose homeostasis in subjects with normal fasting glucose. Diab Care. 2004;27(10):2470-2477. doi:10.2337/diacare.27.10.2470

Jeszka-Skowron M, Flaczyk E, Jeszka J, Krejpcio Z, Król E, Buchowski MS. Mulberry leaf extract intake reduces hyperglycemia in streptozotocin (STZ)-induced diabetic rats fed a high-fat diet. J. Funct. Foods. 2014;8:9-17. doi:10.1016/j.jff.2014.02.018

Huang ZR, Zhao LY, Zhu FR, Liu Y, Xiao JY, Chen ZC, Lv XC, Huang Y, Liu B. Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods. 2022;11(7):974. doi:10.3390/foods11070974