Isolation, Carbohydrate Metabolism Profile, and Molecular Identification of Plant-Derived Lactic Acid Bacteria from Musa acuminata x balbisiana and Medinilla cummingii Naudin
Main Article Content
Abstract
Plants serve as a conducive milieu for diverse microorganisms, including lactic acid bacteria (LAB). Heightened concerns surrounding issues related to dairy products have catalyzed interest in exploring plant-derived LAB as valuable reservoirs for innovative strains with applications in both industrial and medical domains. The regional variability of LAB species and the lack of documented isolation studies in Mindanao, Philippines, especially concerning endemic flowers, are noteworthy factors. Consequently, the primary aim of this study is to systematically isolate, purify, characterize, and identify LAB originating from two plant sources: Musa acuminata x balbisiana and Medinilla cummingii Naudin. The two LAB isolates denoted as BNA1 and MED1, respectively, manifest the cardinal attributes indicative of lactic acid bacteria, namely gram-positive, catalase-negative, coccobacilli in morphology, and display proficient clearing around the colony through lactic acid production on MRS agar media supplemented with 1% calcium carbonate (CaCO3). Using the API 50 CHL system to study phenotypic characteristics through sugar fermentation showed that BNA1 has vigorous fermentation activity on 27 carbohydrates and weak fermentation activity on 14 carbohydrates. Meanwhile, MED1 has demonstrated robust fermentation activity on 21 carbohydrates. Based on the 16S rRNA gene, BNA1 and MED1 are identified as MED1 as Lactiplantibacillus sp. (GenBank Accession Number PP627039) and Enterococcus faecium (GenBank Accession Number PP627037), respectively. The findings of this research will serve as a fundamental basis for future investigations, particularly on its potential as new probiotic strains from plants and their corresponding applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Leska A, Nowak A, Motyl I. Isolation and Some Basic Characteristics of Lactic Acid Bacteria from Honeybee (Apis mellifera L.) Environment—A Preliminary Study. Agriculture. 2022; 12(10):1562. Doi: https://doi.org/10.3390/agriculture12101562
Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Intl. 2020; 1;136:109571. Doi: https://doi.org/10.1016/j.foodres.2020.109571
Food & Agriculture Org. Probiotics in food: Health and Nutritional Properties and Guidelines for Evaluation. Food & Agri Org; 2006.
Teneva-Angelova T, Бешкова Д. Non-traditional sources for isolation of lactic acid bacteria. Annals of Micro. 2015; 66(1):449–59. Doi: https://doi.org/10.1007/s13213-015-1127-9
Sakandar HA, Kubow S, Sadiq FA. Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers. Lebensmittel-Wissenschaft + Technologie/Food Sci & Tech. 2019; 104:70–5. Doi: https://doi.org/10.1016/j.lwt.2019.01.038
Maggini V, Mengoni A, Bogani P, Firenzuoli F, Fani R. Promoting model systems of Microbiota–Medicinal plant interactions. Trends Plant Sci. 2020; 25(3):223–5. Doi: https://doi.org/10.1016/j.tplants.2019.12.013
Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr. Opin. Biotechnol; 49:64–72. Doi: https://doi.org/10.1016/j.copbio.2017.07.016
Rodríguez LGR, Mohamed F, Bleckwedel J, Medina RB, De Vuyst L, Hébert EM, et al. Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina. Front. Microbiol. 2019; 10. Doi: https://doi.org/10.3389/fmicb.2019.01091
Saguibo JD, Mercado MA, Maldia ST, Jimeno BT, Perez MTM, Calapardo MR, et al. Identification and characterization of lactic acid bacteria isolated from some medicinal and/or edible Philippine plants. Food Res. 2019; 698–712. Doi: https://doi.org/10.26656/fr.2017.3(6).148
Divisekera DMWD, Samarasekera JKRR, Hettiarachchi C, Gooneratne J, Choudhary M, Gopalakrishnan S. Isolation and identification of lactic acid bacteria with probiotic potential from fermented flour of selected banana varieties grown in Sri Lanka. Natl. Sci. Found. 2019; 47(1):3. Doi: https://doi.org/10.4038/jnsfsr.v47i1.8922
Bagabaldo PA, Atienza L, Castillo-Israel KAT, Barrion ASA, Laurena AC, Estacio MAC. Exploring the Nutritional, Antioxidant, and Lipid-Lowering Properties of Saba Banana (Musa acuminata x balbisiana BBB Group) Peels. Phil. Agric. Sci. 2023; 106(4):358–68. Doi: https://doi.org/10.62550/ci037023
Chowdary MY, Rana SS, Ghosh P. Banana inflorescence and their potential health benefits as future food. Qual. Assur. Saf. Crops Foods. 2022; 14(2):131–6. Doi: https://doi.org/10.15586/qas.v14i2.1066
Zou F, Tan C, Zhang B, Wu W, Shang N. The Valorization of Banana By-Products: Nutritional composition, bioactivities, applications, and future development. Foods. 2022; 11(20):3170. Doi: https://doi.org/10.3390/foods11203170
Rayos AL, Rodriguez EB, Gruezo WS, Hadsall AS, Cardenas LB. Phenetic analysis of eighteen species of Philippine Medinilla Gaudich. (Melastomataceae) based on morphological characteristics and phenolic profile. Phil. J. Syst. Biol. 2016; 10:14-24.
Han QH, Ye M, Gong X, Zhang N, Zhang C, Li M. Chemical constituents of Medinilla septentrionalis (W. W. Sm.) H. L. Li (Melastomataceae). Biochem. Syst. Ecol. 2019; 86:103901. Doi: https://doi.org/10.1016/j.bse.2019.05.009
Milanda T, Fitri WN, Barliana MI, Chairunnisaa AY, Sugiarti L. Antifungal activities of Medinilla speciosa Blume fruit extracts against Candida albicans and Trichophyton rubrum.J. Adv. Pharm. Educ. 2021; 11(3):1–8. Doi: https://doi.org/10.51847/xdbihmqd2p
De Man JC, Rogosa M, Sharpe ME. A Medium For The Cultivation Of Lactobacilli. J. Appl. Bacteriol. 1960; 23(1):130–5. Doi: https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
Yudianti NF, Yanti R, Cahyanto MN, Rahayu ES, Utami T. Isolation and Characterization of Lactic Acid Bacteria from Legume Soaking Water of Tempeh Productions. Digi. Press Life Sci. 2020; 2:00003. Doi: https://doi.org/10.29037/digitalpress.22328
Omar HJG, Regio MGM, Peña JCD, Lim NT, Andal MS, De Guzman GQ, Santiago NCD, Ecalne NJKT, De Guzman NLMC, Montemayor NSS, Lapig NJDR, Ramos NJPDT. Proximate composition and antioxidant activity of the saba (Musa acuminata x balbisiana Colla) banana blossom family Musaceae. GSC Biol. Pharm. Sci. 2022; 21(2):026–32. Doi: https://doi.org/10.30574/gscbps.2022.21.2.0418
Ramu R, Shirahatti PS, Anilakumar KR, Nayakavadi S, Zameer F, Dhananjaya BL, Prasad, MNN. Assessment of nutritional quality and global antioxidant response of 20.banana (Musa sp. CV. Nanjangud Rasa Bale) pseudostem and flower. Pharmacogn. Res. 2017; 9(5):74. Doi: https://doi.org/10.4103/pr.pr_67_17
Soni D, Saxena G. Complete nutrient profile of Banana flower: A review.J. Plant Sci. Res. 2021; 37(2):263–7. Doi: https://doi.org/10.32381/jpsr.2021.37.02.6
Kavya MN, Manasa R, Deepika M, Shivananjappa M, Shekhara Naik R. A review on banana flower: Nutritional composition, processed products and health benefits. IP J. Nutr. Metab. Health Sci. 2023; 6(3):110–5. Doi: https://doi.org/10.18231/j.ijnmhs.2023.019
Guan Z, Yu EZ, Feng Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021; 26(22):6802. Doi: https://doi.org/10.3390/molecules26226802
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8(3):92. Doi: https://doi.org/10.3390/foods8030092
Ulloa CU, Almeda F, Goldenberg R, Kadereit G, Michelangeli FA, Penneys DS, Stone RD, Veranso-Libalah MC. Melastomataceae: Global Diversity, distribution, and endemism. Syst. Evol. Ecol. Melastomataceae, Springer, Cham. 2022; 3–28. Doi: https://doi.org/10.1007/978-3-030-99742-7_1
Fernando ES, and Balete DS. Medinilla dallciana (Melastomataceae: Dissochaeteae), a new species from Luzon Island, Philippines. Phil. J. Sci. 2013;142(Special Issue), 88–93.
Quakenbush PJ. Pollination, Mating System, Phenology and Characterisation of Medinilla multifloraMerr. (Melastomataceae) on Mt Makiling, Philippines. Int. J. Bot. Gard. Hort. 2018; 16: 121–139. Doi: Doi: https://doi.org/10.24823/Sibbaldia.2018.251
Han QH, Ye M, Gong X, Zhang N, Zhang C, Li MH. Chemical constituents of Medinilla septentrionalis (W. W. Sm.) H. L. Li (Melastomataceae). Biochem. Syst. Ecol. 2019; 86:103901. Doi: https://doi.org/10.1016/j.bse.2019.05.009
Milanda T, Fitri WN, Barliana MI, Chairunnisaa AY, Sugiarti L. Antifungal activities of Medinilla speciosa Blume fruit extracts against Candida albicans and Trichophyton rubrum. J. Adv. Pharm. Educ. Res. 2021; 11(3):1–8. Doi: https://doi.org/10.51847/xdbihmqd2p
Banaay CGB, Balolong MP, Elegado FB. Lactic acid bacteria in Philippine traditional fermented foods. IntechOpen. 2013. Doi: https://doi.org/10.5772/50582
Martínez B, Rodrı́Guez A, Kulakauskas S, Chapot‐Chartier M. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol. Rev. 2020; 44(5):538–64. Doi: https://doi.org/10.1093/femsre/fuaa021
Fidan H, Esatbeyoglu T, Šimat V, Trif M, Tabanelli G, Kostka T, Montanari C, Ibrahim SA, Özogul F. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. Food Biosci. 2022; 47:101741. Doi: https://doi.org/10.1016/j.fbio.2022.101741
Gunkova PI, Buchilina AS, Максимюк НН, BazarnovaYuG, Girel KS. Carbohydrate fermentation test of lactic acid starter cultures. OP Conf. Ser. Earth Environ. Sci. 2021; 852(1):012035. Doi: https://doi.org/10.1088/1755-1315/852/1/012035
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci. Technol. 2021; 115:486–99. Doi: https://doi.org/10.1016/j.tifs.2021.06.058
Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Sci. 2023; 6(3):110–5. Doi: https://doi.org/10.18231/j.ijnmhs.2023.019
Yu A, Leveau JHJ, Marco ML. Abundance, diversity and plant‐specific adaptations of plant‐associated lactic acid bacteria. Environ. Microbiol. Rep. 2019 Oct 28; 12(1):16–29. Doi: https://doi.org/10.1111/1758-2229.12794
Endo A, Tanizawa Y, Arita M. Isolation and Identification of Lactic Acid Bacteria from Environmental Samples. Meth. Mol. Biol 2018; 1887:3–13. Doi: https://doi.org/10.1007/978-1-4939-8907-2_1
Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013; 33(1):1–10. Doi: https://doi.org/10.1016/j.fm.2012.09.003
Garcia EF, Luciano WA, Xavier DE, Da Costa WKA, De Sousa Oliveira K, Franco OL, De Morais Júnior MA, Lucena, BTL, Picão RC, Magnani M, Saarela M, De Souza, EL. Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Front. Microbiol. 2016; 7. Doi: https://doi.org/10.3389/fmicb.2016.01371
Skotniczny M, Satora P. Molecular Detection and Identification of Plant-Associated Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2023; 24(5):4853. Doi: https://doi.org/10.3390/ijms24054853
Huang C, Chen CC, Lin Y, Chen CH, Lee AY, Liou J, Gu C, Huang L.The mutL Gene as a Genome-Wide Taxonomic Marker for High Resolution Discrimination of Lactiplantibacillus plantarum and Its Closely Related Taxa. Microorganisms. 2021; 9(8):1570. Doi: https://doi.org/10.3390/microorganisms9081570
Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recAGene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers. Appl. Environ. Microbiol. 2001; 67(8):3450–4. Doi: https://doi.org/10.1128/aem.67.8.3450-3454.2001
Wang Y, Wu Y, Wang Y, Han X, Mei X, Yu D, Wang Y, Li W. Antioxidant properties of probiotic bacteria. Nutrients. 2017; 9(5):521. Doi: https://doi.org/10.3390/nu9050521
Zheng J, Wittouck S, Salvetti E, Franz CM a. P, Harris HMB, Mattarelli P, O’ Toole PW, Pot B, Vandamme, P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020; 70(4):2782–858. Doi: https://doi.org/10.1099/ijsem.0.004107
Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed Res. Int. 2018; 2018:1–18. Doi: https://doi.org/10.1155/2018/9361614
Fred EB, Peterson WH, Anderson JA. The characteristics of certain pentose-destroying bacteria, especially as concerns their action on arabinose and xylose. J. Biol. Chem. 1921; 48(2):385–412. Doi: https://doi.org/10.1016/s0021-9258(18)86020-3
Zanoni P, Farrow J a. E, Phillips BA, Collins MD. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int. J. Syst. Bacteriol. 1987; 37(4):339–41. Doi: https://doi.org/10.1099/00207713-37-4-339
Abriouel H, Benomar N, Lucas R, Gálvez A. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Int. J. Food Microbiol. 2011; 144(3):487–96. Doi: https://doi.org/10.1016/j.ijfoodmicro.2010.11.006
Pavli F, Argyri AA, Papadopoulou OS. Probiotic Potential of Lactic Acid Bacteria from Traditional Fermented Dairy and Meat Products: Assessment by In Vitro Tests and Molecular Characterization. J. Probiotics Health. 2016; 04(03). Doi: https://doi.org/10.4172/2329-8901.1000157
Al-Yami AM, Al-Mousa AT, Al-Otaibi SA, Khalifa A. Lactobacillus species as probiotics: isolation sources and health benefits. J. Pure Appl. Microbiol. 2022; 16(4):2270–91. Doi: https://doi.org/10.22207/jpam.16.4.19
Gu M, Cho JH, Suh J, Cheng J. Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition. J. Oral Microbiol. 2022; 15(1). Doi: https://doi.org/10.1080/20002297.2022.2161179
Abriouel H, Montoro BP, Del Carmen Casado Muñoz M, Lerma LL, Pestaña MH, Gómez NC, Franz CMaP, Gálvez A, Benomar N. Complete Genome Sequence of a Potential Probiotic, Lactobacillus pentosus MP-10, Isolated from Fermented Aloreña Table Olives. Genome Announc. 2016; 4(5). Doi: https://doi.org/10.1128/genomea.00854-16
Abriouel H, Montoro BP, Casimiro‐Soriguer CS, Pérez-Pulido AJ, Knapp CW, Gomez NC, Castillo-Gutiérrez S, Estudillo-Martínez MD, Gálvez A, Benomar N. Insight into Potential Probiotic Markers Predicted in Lactobacillus pentosus MP-10 Genome Sequence. Front. Microbiol. 2017; 8. Doi: https://doi.org/10.3389/fmicb.2017.00891
Kai Y, Li P, Gu Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics. 2020; 112(5):3142–9. Doi: https://doi.org/10.1016/j.ygeno.2020.05.015
Krawczyk B, Wityk P, Gałęcka M, Michalik M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms. 2021; 9(9):1900. Doi: https://doi.org/10.3390/microorganisms9091900
Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: Between Probiotic Potential and Safety Concerns—An update. Front. Microbiol. 2018; 9. Doi: https://doi.org/10.3389/fmicb.2018.01791
Jiao Y, Yang HM, Shigwedha N, Zhang S, Liu F, Zhang L. Probiotic Effects and Metabolic Products of Enterococcus faecalis LD33 with Respiration Capacity. Foods. 2022; 11(4):606. Doi: https://doi.org/10.3390/foods11040606
Baccouri O, Boukerb AM, Farhat LB, Zebré A, Zimmermann K, Domann E, Cambronel M, Barreau M, Maillot O, Rincé I, Muller C, Marzouki MN, Feuilloley M, Abidi F, Connil N. Probiotic Potential and Safety Evaluation of Enterococcus faecalis OB14 and OB15, Isolated from Traditional Tunisian Testouri Cheese and Rigouta, Using Physiological and Genomic Analysis. Front. Microbiol. 2019;10. Doi: https://doi.org/10.3389/fmicb.2019.00881
Jiao YH, Zhang L, Liu F. Identification of a Lactic Acid Bacteria Strain from Traditional Dairy Products. Adv. Mater. Res. 2013;781–784:1599–602. Doi: https://doi.org/10.4028/www.scientific.net/amr.781-784.1599
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS. Scientific Opinion on the update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA†. EFSA Journal. 2017; 15(3). Doi: https://doi.org/10.2903/j.efsa.2017.4664
Sonei A, Dovom MRE, Yavarmanesh M. Evaluation of probiotic, safety, and technological properties of bacteriocinogenic Enterococcus faecium and Enterococcus faecalis strains isolated from lighvan and koozeh cheeses. Int. Dairy J. 2024; 148:105807. Doi: https://doi.org/10.1016/j.idairyj.2023.105807
Kumar S, Filipski A, Battistuzzi FU, Pond SLK, Tamura K. Statistics and truth in phylogenomics. Mol. Biol. Evol. 2011; 29(2):457–72. Doi: https://doi.org/10.1093/molbev/msr202