Optimization of Antimicrobial Peptide (AMP) Extraction from Justicia gendarussa Leaves Using Box-Behnken Design

Authors

  • Popi A. Kurniatin Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • Mahalia FBr Ginting Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • Az-zahra Khoerunnisa Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • Inda Setyawati Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • I M. Artika Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • Laksmi Ambarsari Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia
  • Waras Nurcholis Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i6.12

Keywords:

Justicia gendarussa Burm. F. leaves, Box-Behnken design, optimize, Antimicrobial peptide

Abstract

This study aimed to determine the optimal conditions for extracting antimicrobial peptides (AMPs) from Justicia gendarussa Burm. F. leaves and to identify AMPs that have potential antibacterial activity. Extraction optimization was performed using a Box-Behnken design, and total protein levels were measured using the Bradford method. SDS-PAGE was used to identify AMPs, and the well diffusion method was used to test their antibacterial activity. The results showed that the optimum extraction conditions were an acetic acid concentration of 14.9%, an extraction time of 2.9 h, and a sample-to-solvent ratio of 1:3. The AMP from J. gendarussa leaves was predicted to have a molecular weight of ~11 kDa. The crude extracts exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus, with inhibition zones of 8.61 mm and 22.85 mm, respectively. These findings suggest that AMP derived from J. gendarussa leaves possesses promising antibacterial properties, thus demonstrating its potential as a viable source for developing antibacterial agents in the context of the antibiotic industry.

Author Biographies

Laksmi Ambarsari, Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia

Tropical Biopharmaca Research Center, IPB University, Taman Kencana Bogor, 16128 West Java, Indonesia

Waras Nurcholis, Department of Biochemistry, IPB University, Dramaga Bogor, 16680 West Java, Indonesia

Tropical Biopharmaca Research Center, IPB University, Taman Kencana Bogor, 16128 West Java, Indonesia

References

de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13:e1002184. Doi:10.1371/journal.pmed.1002184.

Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis. 2019;11:36–42. Doi:10.4103/jgid.jgid_110_18.

Guryanova S V, Ovchinnikova T V. Immunomodulatory and allergenic properties of antimicrobial peptides. Int J Mol Sci. 2022;23:2499. Doi:10.3390/ijms23052499.

Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779. Doi:10.3389/fmicb.2020.582779.

Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6:1543–75. Doi:10.3390/ph6121543.

Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, Kumar N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int J Mol Sci. 2020;21:7047. Doi:10.3390/ijms21197047.

Nyembe PL, Ntombela T, Makatini MM. Review: Structure-activity relationship of antimicrobial peptoids. Pharmaceutics. 2023;15:1506. Doi:10.3390/pharmaceutics15051506.

Bakare OO, Gokul A, Niekerk L-A, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent progress in the characterization, synthesis, delivery procedures, treatment strategies, and precision of antimicrobial peptides. Int J Mol Sci. 2023;24:11864. Doi:10.3390/ijms241411864.

Gelinski JMLN, de Melo Franco BDG, Fonseca GG. 9 - Plant-derived antimicrobial peptides. In: Ajesh K, Sreejith KBT-AP, editors. Antimicrobial Peptides: Challenges and Future Perspectives, Academic Press; 2023, p. 157–69. Doi:10.1016/B978-0-323-85682-9.00003-9.

Zuorro A, Malavasi V, Cao G, Lavecchia R. Use of cell wall degrading enzymes to improve the recovery of lipids from Chlorella sorokiniana. Chem Eng J. 2019;377:120325. Doi:10.1016/j.cej.2018.11.023.

Li J, Hu S, Jian W, Xie C, Yang X. Plant antimicrobial peptides: structures, functions, and applications. Bot Stud. 2021;62:5. Doi:10.1186/s40529-021-00312-x.

Farjana A, Zerin N, Kabir MdS. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria. Asian Pac J Trop Dis. 2014;4:S920–3. Doi:10.1016/S2222-1808(14)60758-1.

Mondal M, Hossain MdM, Rahman MA, Saha S, Uddin N, Hasan MdR, Kader A, Wahed TB, Kundu SK, Islam MT, Mubarak MS. Hepatoprotective and antioxidant activities of Justicia gendarussa leaf extract in carbofuran-induced hepatic damage in rats. Chem Res Toxicol. 2019;32:2499–508. Doi:10.1021/acs.chemrestox.9b00345.

Shinwari ZK, Ahmad I, Ahmad N. Investigation of phytochemical, antimicrobial activities of Justicia gendarussa and Justicia adhatoda. Pak J Bot. 2020;52:1745–9. Doi:10.30848/PJB2020-5(1).

Hikmawanti NPE, Widiyanti P, Prajogo Ew B. In vitro anti-HIV activity of ethanol extract from gandarusa (Justicia gendarussa Burm. f) leaves. Infect Dis Rep. 2020;12:8730. Doi:10.4081/idr.2020.8730.

Kuber RB. Effect of various extracts of Justicia gendarussa leaves on neuropharmacological behavior activity in MPTP induced mice model. Res J Pharm Technol. 2020;13:5793–8. Doi:10.5958/0974-360X.2020.01010.0.

Ratih GAM, Imawati MF, Nugroho RR, Purwanti DI, Wongso S, Prajogo B, Indrayanto G. Phytochemicals of gandarusa (Justicia gendarussa) and its preparations. Nat Prod Commun. 2019;14:1–10. Doi:10.1177/1934578X19851406.

Barashkova AS, Rogozhin EA. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? Plant Methods. 2020;16:143. Doi:10.1186/s13007-020-00687-1.

Pereira LdS, do Nascimento VV, Ribeiro SdFF, Rodrigues R, Fernandes KVS, Carvalho AdO, Vasconcelos IM, Bento CdS, Sudré CP, Zottich U, Gomes VM. Characterization of Capsicum annuum L. leaf and root antimicrobial peptides: antimicrobial activity against phytopathogenic microorganisms. Acta Physiol Plant. 2018;40:107. Doi:10.1007/s11738-018-2685-9.

Fialho TL, Carrijo LC, Magalhães Júnior MJ, Baracat-Pereira MC, Piccoli RH, de Abreu LR. Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Res Int. 2018;107:406–13. Doi:10.1016/j.foodres.2018.02.009.

Marliani N, Artika IM, Nurcholis W. Optimization extraction for total phenolic, flavonoid contents, and antioxidant activity with different solvents and UPLC-MS/MS metabolite profiling of Justicia gendarussa Burm.f. Chiang Mai Univ J Nat Sci. 2022;21:e2022046. Doi:10.12982/CMUJNS.2022.046.

Nurcholis W, Safithri M, Marliani N, Iqbal M. Response surface modeling to optimize sonication extraction with the maceration method for the phenolic content and antioxidant activity of Justicia gendarussa Burm f. J Appl Pharm Sci. 2023;13:181–7. Doi:10.7324/JAPS.2023.148030.

Jain T, Singh MP, Bhardwaj H, Gohil KJ. Review on pharmacology activities of Justicia gendarussa Burm F. Pharmacol Res - Mod Chin Med. 2024;10:100339. Doi:10.1016/j.prmcm.2023.100339.

Zhang H-X, Xia Z, Xu T-Q, Xu W, Chen Y-M, Zhou G-X. One pair of new enantiomeric trinorsesquiterpenes from the aerial parts of Justicia gendarussa. J Asian Nat Prod Res. 2021;23:1140–7. Doi:10.1080/10286020.2021.1871603.

Mijiti Ya, Abulimiti A, Obulkasim A, Mirzaakhmedov ShYa, Ziyavitdinov DzhF, Yili A, Salikhov SI, Aisa HA. Isolation and characterization of a new antimicrobial peptide from Pimpinella anisum seeds. Chem Nat Compd. 2019;55:914–7. Doi:10.1007/s10600-019-02844-y.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. Doi:10.1016/0003-2697(76)90527-3

Ninfa AJ, Ballou DP, Benore M. Fundamental laboratory approaches for biochemistry and biotechnology. 2nd ed. John Wiley & Sons; 2010.

Niu L, Zhang H, Wu Z, Wang Y, Liu H, Wu X, Wang W. Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS One. 2018;13:e0202238. Doi:10.1371/journal.pone.0202238.

Debalke D, Birhan M, Kinubeh A, Yayeh M. Assessments of antibacterial effects of aqueous-ethanolic extracts of Sida rhombifolia’s aerial part. Sci World J. 2018;2018:8429809. Doi:10.1155/2018/8429809.

Alam P, Siddiqui NA, Rehman MdT, Hussain A, Akhtar A, Mir SR, Alajmi MF. Box–Behnken design (bbd)-based optimization of microwave-assisted extraction of parthenolide from the stems of Tarconanthus camphoratus and cytotoxic analysis. Molecules. 2021;26:1876. Doi:10.3390/molecules26071876.

Qiu P, Cui M, Kang K, Park B, Son Y, Khim E, Jang M, Khim J. Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Cent Eur J Chem. 2014;12:164–72. Doi:10.2478/s11532-013-0360-y.

Mahmoud BS, McConville C. Behnken design of experiments of polycaprolactone nanoparticles loaded with irinotecan hydrochloride. Pharmaceutics. 2023;15:1271. Doi:10.3390/pharmaceutics15041271.

Husnaeni, Maruddin F, Malaka R, Prahesti KI. Study on the use of various concentration of acetic acid and different precipitation duration on casein characteristics. IOP Conf Ser Earth Environ Sci. 2019;343:12035. Doi:10.1088/1755-1315/343/1/012035.

Chen X, Wei Z, Zhu L, Yuan X, Wei D, Peng W, Wu C. Efficient approach for the extraction and identification of red pigment from Zanthoxylum bungeanum Maxim and its antioxidant activity. Molecules. 2018;23:1109. Doi:10.3390/molecules23051109.

Ruiz-Domínguez MC, Cerezal P, Salinas F, Medina E, Renato-Castro G. Application of Box-Behnken design and desirability function for green prospection of bioactive compounds from Isochrysis galbana. Appl Sci. 2020;10:2789. Doi:10.3390/app10082789.

Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Asch M, Assaf-ducrocq C, Gontier E. The desirability optimization methodology; a tool to predict two antagonist responses in biotechnological systems: case of biomass growth and hyoscyamine content in elicited Datura starmonium hairy roots. Iran J Biotechnol. 2018;16:11–9. Doi:10.21859/ijb.1339.

Papachristos A, Karatza E, Kalofonos H, Sivolapenko G. Pharmacogenetics in model-based optimization of bevacizumab therapy for metastatic colorectal cancer. Int J Mol Sci. 2020;21:3753. Doi:10.3390/ijms21113753.

Sulaiman ISC, Basri M, Fard Masoumi HR, Chee WJ, Ashari SE, Ismail M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J. 2017;11:54. Doi:10.1186/s13065-017-0285-1.

Ben Brahim R, Ellouzi H, Fouzai K, Asses N, Neffati M, Sabatier JM, Bulet P, Regaya I. Optimized chemical extraction methods of antimicrobial peptides from roots and leaves of extremophilic plants: Anthyllis sericea and Astragalus armatus collected from the tunisian desert. Antibiotics. 2022;11:1302. Doi:10.3390/antibiotics11101302.

Koontz L. Chapter One - TCA Precipitation. In: Lorsch JBT-M in E, editor. Laboratory Methods in Enzymology: Protein Part C, vol. 541, Academic Press; 2014, p. 3–10. Doi:10.1016/B978-0-12-420119-4.00001-X.

Kovaleva V, Kiyamova R, Cramer R, Krynytskyy H, Gout I, Filonenko V, Gout R. Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides (NY). 2009;30:2136–43. Doi:10.1016/j.peptides.2009.08.007.

Salas CE, Badillo-Corona JA, Ramírez-Sotelo G, Oliver-Salvador C. Biologically active and antimicrobial peptides from plants. Biomed Res Int. 2015;2015:102129. Doi:10.1155/2015/102129.

Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial peptides from plants. Pharmaceuticals. 2015;8:711–57. Doi:10.3390/ph8040711.

Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: An update on classifications and databases. Int J Mol Sci. 2021;22:11691. Doi:10.3390/ijms222111691.

Dinos GP, Athanassopoulos CM, Missiri DA, Giannopoulou PC, Vlachogiannis IA, Papadopoulos GE, Papaioannou D, Kalpaxis DL. Chloramphenicol derivatives as antibacterial and anticancer agents: Historic problems and current solutions. Antibiotics. 2016;5:20. Doi:10.3390/antibiotics5020020.

Jin Q, Kirk MF. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front Environ Sci. 2018;6:21. Doi:10.3389/fenvs.2018.00021.

Meroueh SO, Bencze KZ, Hesek D, Lee M, Fisher JF, Stemmler TL, Mobashery S. Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci. 2006;103:4404–9. Doi:10.1073/pnas.0510182103.

Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593–656. Doi:10.1128/MMBR.67.4.593-656.2003.

Al-Qudah MMA, Rahahleh RJ, Alraei WY, Aljaraedah TY, Abu-Harirah HA, Amawi KF, El-Qudah JMF. Evaluation of the antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from human intestine against pathogenic microorganisms. Trop J Nat Prod Res. 2023;7:3182–90. Doi:10.26538/tjnpr/v7i6.18.

Downloads

Published

2024-06-29

How to Cite

Kurniatin, P. A., Ginting, M. F., Khoerunnisa, A.- zahra, Setyawati, I., Artika, I. M., Ambarsari, L., & Nurcholis, W. (2024). Optimization of Antimicrobial Peptide (AMP) Extraction from Justicia gendarussa Leaves Using Box-Behnken Design. Tropical Journal of Natural Product Research (TJNPR), 8(6), 7416–7422. https://doi.org/10.26538/tjnpr/v8i6.12

Most read articles by the same author(s)