Role of New Nanosized Feed Additives as Inhibitors of Certain Gram-Positive and Gram-Negative Bacteria and as Anti-Mycotoxigenic Agents


  • Nesrine. H. Youssef Regional Centre for Food and Feed (RCFF), Agricultural Research Center, Microbiology and Mycotoxins labs, Dekhila Port, Alexandria, Egypt.
  • Alnaji A. Almansori Botany Department, Faculty of Science, Derna University. Derna 417230. Libya
  • Amany H. Shams Bacterial Plant Diseases and Molecular Bacteriology Laboratory, Plant Pathology Department, Faculty of Agriculture El Shatby. Alexandria University. 21545.
  • Mayada A. Sabra Agricultural Department of Botany (Agricultural Microbiology), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
  • Pousy A. Agricultural Research Center, Horticultural ResearchInstitute, Forestry Department, Alexandria, Egypt



AflatoxinB, Enterobacter cloacae staphylococcus aureus Aspergillus flavus, plant parts and algae nanoparticles, Antimicrobial activities


Recently, because of the world's critical conditions, the development of new feed additives and the creation of non-traditional double-function feed additives are essential and for improving feeds quality by reducing the content of certain bio-contaminants. This study aimed to reduce environmental pollutants and create effective and economical inhibitors of bio-contaminants by evaluating the aptitude of these feed additives such as particles Miswak (Salvadora persica), black mulberry leaves, and seaweeds (Sargassum linifolium and Posidonia oceanica) algae with different concentrations (500 and 1000 µl) and (50 and 100 µl) before and after nanosizing process, respectively, to reduce the growth of certain gram-positive and gram-negative bacteria, such as Enterobacter cloacae and Staphylococcus aureus, , as well as the production of the fungus Aspergillus flavus aflatoxin (B1). Our data illustrated that all the tested particles of  Miswak, black mulberry leaves, and Sargassum linifolium and Posidonia oceanica algae possessed antibacterial activity against the tested bacteria, which increased after the nanosizing process, but S. aureus was more susceptible to the tested nanosized treatments than E. cloacae. Treatments with nanosized Miswak had the greatest inhibitory effect on both tested bacteria, with 96.84% regarding S. aureus and 95.185% in the case of E. cloacae at a concentration of 50 μl and dilution10-6. The aflatoxin detoxification capabilities of these treatments were tested. Posidonia oceanica (P.O.) particles were the best detoxifier agent before and after the nanosizing process, followed by blue mulberry leaves and S. linifolium particles. Nanosized treatments, especially Posidonia oceanica, an antibacterial and aflatoxin detoxifier agent, are recommended.


Sumbana J, Santona A, Fiamma M, Taviani E, Deligios M., Chongo V, Sacarlal J, Rubino ,S.and, Paglietti ,B. Polyclonal emergence of MDR Enterobacter cloacae complex isolates producing multiple extended spectrum beta‑lactamases at Maputo Central Hospital, Mozambique.2022. Rend. Fis. Acc. Lincei 33, 39–45.

Franco M, Stefa´nski T, Jalava T, Lehto M, Kahala M, Järvenpää E, Mäntysaari P, and Rinne M. Effect of Potato By-Product on Production Responses of Dairy Cows and Total Mixed Ration Stability. Diary. 2021; 2, 218–230. MDPI

Schroeder BK, DuToit LJ, and Schwarts HF. This is the first report of Enterobacter cloacae causing onion bulb rot in the Columbia Basin of Washington State. Plant Dis.2009; 93:323.

Wang GF, Xie GL, Zhu B, Huang JS, Liu, B, Kawicha P, Benyon L, and Duan YP. Identification and characterization of Enterobacter complex causing mulberry (Morus alba) wilt disease in China. Eur. J. Plant Pathol. 2010; 126.465- 478.

Santana-Méridas O, González-Coloma A, & Sánchez-Vioque R. Agricultural residues as a source of bioactive natural products. Phytochem Rev. 2012; 11.447–466.

Zhang ZF, and Nan ZB. Occurrence of lucerne seedborne Enterobacter cloacae sprouts decay in Gansu Province of China. Eur. J. Plant Pathol. 2013; 135.5-9.

Ashmawy NA, El-Bebany AF, Shams AH, and Shoeib AA. Identification and differentiation of soft rot and blackleg bacteria from potato using nested and multiplex PCR J. of Plant Dis and Prot. 2019; 127.141–153.

Haag AF. J Ross Fitzgerald JR. José R Penadés JR. Staphylococcus aureus in Animals. Microbiol Spectr. 2019. 7(3). DOI: 10.1128/microbiolspec.GPP3-0060-2019.

Nagase N, Sasaki A, Yamashita K, Isolation and species distribution of Staphylococci from animal and human skin. J of Veterinary Medical Sci. 2002 .64 (2).245-250.

Dharumadurai D, Shanmugapriy S, Thajuddin N, Annamalai P. Aflatoxins and aflatoxins in humans and animals. Cited from book: InTech: Aflatoxins - Biochem and Mol Biol. 2011. DOI: 10.5772/22717.

Zain EM. Impact of mycotoxins on humans and animals. J of Saudi Chem Soci. 2011; 15(2). 129-144.

Mahato N, Sinha M, Sharma K, Wararao RK, and Hwan Cho M. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods.2019; 8 (11). https://doi10.3390/foods8110523.

Mohindru JJ, Garg UK. Green synthesis of copper nanoparticles using tea leaf extract. Int J of Engin Sci and Res Techn.2017; 6. 307-311.

Iqbal S, Younas U, Sirajuddin S, Chan KW, Sarfraz RA, and Kamaluddin Md. Proximate Composition and Antioxidant Potential of Leaves from Three Varieties of Mulberry (Morus sp.): A Comparative Study. Int J Mol Sci. 2012; 13(6). 6651–6664. MDPI. doi: 10.3390/ijms13066651PMCID: PMC3397487.

El-Sherbiny G M, Gazelly A M, Sharaf M H, Moghannemm S A E, Ismail, M KA and , El-Hawary AS. 2023. Exploitation of the antibacterial, antibiofilm and antioxidant activities of Salvadora Persica (Miswak) extract. J of Bioresource and Bioproducts. 2022. 8(1): 59–65.

El-Sherbiny GM, Elbestawy MKM. A review: plant essential oils active against Helicobacter pylori. J. Essent. Oil Res.2022. 34. 203-215.

Kumari A, Parida AK Rangani J, and Panda. Antioxidant Activities, Metabolic Profiling, Proximate Analysis, Mineral Nutrient Composition of Salvadora persica Fruit Unravel a Potential Functional Food and a Natural Source of Pharmaceuticals. Front Pharmacol. 2017; 8: 61. doi: 10.3389/fphar.2017.00061 PMCID: PMC5306401. PMID: 28261096.

Hamed SM, Abd El-Rhman AA, Abdel-Raouf N, and Ibraheem IBM. Role of marine macroalgae in plant protection and improvement for sustainable agriculture technology. Beni-Suef Univ. 2017. J Basic Appl Sci 2017. 7. 104–110.

Keyimu XG, and Abuduli M. Seaweed Composition and Potential Uses. Int J of ChemTech Res. 2019; 12 (1). 105-111.

Morsy GMT, Bekhet EK, and Mohamed EA. Phytochemical screening for antibacterial compounds of some seaweed from coastal area of Abu-Qir, Alexandria, phytochemical screening for antibacterial compounds of some seaweed from coastal area of Abu-Qir, Alexandria. Egyptian J. of Phycol.2020; 19: 47-57.

Nazal KM. Advanced Sorption Process Applications. Intech Open; London, UK 2019, Marine Algae Bioadsorbents for Adsorptive Removal of Heavy Metals.

Abudeshesh RM, Aboul-Nasr AM, Khairy MH, Atia MM, Sabra MA. Differential impacts of interactions between Serendipita indica, Chlorella vulgaris, Ulva lactuca and Padina pavonica on Basil (Ocimum basilicum L.). Plant Physio and Biochem.2024. 206. 108-218.

Shabaka SH. Checklist of seaweeds and seagrasses of Egypt (Mediterranean Sea). The Egyptian J of Aqua Res. 2018. 44 (3). 203-212.

Hamoutene D, Romeo M, Gnassia M. Cadmium effects on oxidative metabolism in a marine seagrass: Posidonia oceanica. Bulletin of Enviro Contami and Toxicol J.1996. 56(2).

Pivaa G, Fracassettib D, Tirellib A,Mascheronib E, Musattib A, Inglese P, Piergiovanni L, Rollini M. Evaluation of the antioxidant/antimicrobial performance of Posidonia oceanica in comparison with three commercial natural extracts and as a treatment on fresh-cut peaches (Prunus persica Batsch). Postharvest Biolo and Techn.2017; (124). 54-61.

Espinosa CD, Stein HH. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status. J Animal Sci and Biotechnol. 2021; 12(13).

Samira S, GHORANNEVISS M, HANTEHZADEH MR, Synthesis and optical characterization of copper nanoparticles prepared by laser ablation. Bull Mater Sci. 2017; 40. 37–43.

Jayanta S, Leepipatpiboon N. Hollow-fibre Microextraction Combined with Hydrophilic Interaction Liquid Chromatography‒Mass Spectrometry for Analytical Determination of High Polarity Herbicides in Water - Chiang Mai J Sci. 2018; 45(6). 2381-2396

Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun GLiB. Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen (Fusarium graminearum). Nanomaterials. 2020; 10:219.

Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M , Ettcheto M, Camins A , Silva AM, Durazzo A, Santini A, Garcia ML, Eliana B, and ,Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents.. Nanomaterials (Basel). 2020; 10(2). 292. doi: 10.3390/nano10020292.

Thakur S, Sharma S, Thakur S, Rai R. Green synthesis of copper nanoparticles using Asparagus adscendens Roxb root and leaf extracts and their antimicrobial activities. Inter J of Curr Microbiol and Appl Sci. 2018; 7. 683-694.

Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR and Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front. Microbiol. 2022. 13:934031. doi: 10.3389/fmicb.2022.934031.

Rojas B, Soto N, Villalba M, Bello-Toledo H, Meléndrez-Castro M, and Sánchez-Sanhueza G. Antibacterial Activity of Copper Nanoparticles (CuNPs) against a Resistant Calcium Hydroxide Multispecies Endodontic Biofilm Nanomaterials (Basel). 2021; 11(9): 2254. doi: 10.3390/nano11092254.

Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli. J Appl Environ Microbiol. 2008; 74 (7) 2171-8. DOI:

Amer MW, and Awwad MA. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization, 35.and antibacterial activity. Chem Inter. 2021; 7(1), 1–8.

Ermini ML, and Voliani V. Antimicrobial Nano-Agents: The Copper Age A.C.S. Nano. 2021; 15(4). 6008–6029 https:/ /

Pham TD, Lee BK . Cu doped TiO2/G.F. for photocatalytic disinfection of Escherichia coli in bioaerosols under visible light irradiation: Application and mechanism. Appl. Surf. Sci. 2014; 296.15–23.

Engle TE, Fellner V , Spears JW. Copper status, serum cholesterol, and milk fatty acid profile in Holstein cows fed varying concentrations of copper. J Dairy Sci. 2001; 84(10):2308-13. DOI: 10.3168/jds. S0022-0302(01)74678-4. PMID: 11699463.

Suzuki T, and Iwahashi Y. The addition of carbon to the culture medium improves the detection efficiency of aflatoxin-producing synthetic fungi. Toxins. 2016; 8: 338-94.

Youssef NH. Comparison between certain chitosan wraps and cellophane wrapson fungal inhibition and mycotoxins migration. Res. on Crops .2019;20. 105-112. DOI: 10.31830/2348-7542.2019.141.

Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J. of Animal Sci. 2008; 86.140–48.

Youssef NH, and Sabra MA. Antibacterial Effects of Fenugreek, Wheat and Hot Red Pepper Seeds and Their Germs Extract on Inhibiting Staphylococcus aureus and Enterobacter cloacae Growth. J. of Advan in Microbiol. 2021; 21(4): 1-16.

Youssef NH, Salaheddin AP, Mohamed ZB, Ahmed A, and Sabra MA. Use of novel microbial and phyto-biotic feed additives in mycotoxins degradation in vitro and their potential in vivo application in fish die. Malaysian J of Microbiol.2023; 19(4). 421-434. DOI:

Youssef NH, Qari SH, Behiry SI, Dessoky ES, El-Hallous EI, Elshaer MM, Kordy A, Maresca V, Abdelkhalek A, Heflish AA. Antimycotoxigenic Activity of Beetroot Extracts against Altenaria alternata Mycotoxins on Potato Crop. Appl. Sci. 2021;11, 4239.

Rahman MM, Refat B, Zhang H, Zhang W, and Yu P. Detect molecular spectral features of newly developed Vicia faba varieties and protein metabolic characteristics in ruminant system using advanced synchrotron radiation based infrared microspectroscopy. A preliminary study. Spectrochimica Acta Part A: Mol and Biomolecular Spectroscopy.2019; 206. 413–420.

Johnson JB, Walsh K, Naiker M. Application of infrared spectroscopy for the prediction of nutritional content and quality assessment of faba bean (Vicia faba L.). Legume Sci. 2020; 2( 40):1 -13.

Wang J, Liu H, and Ren G. Near-infrared spectroscopy (NIRS) evaluation and regional analysis of Chinese faba bean (Vicia faba L.). The Crop J. 2014; 2(1), 28–37.

Alhakmani F, Kumar S, Khan SA. Estimation of total phenolic content in vitro antioxidant, and anti-inflammatory activity of flowers of (Moringa oleifera). Asian Pac J. Trop Biomed.2013; 3. 623-7.

Baba SA, and Malik SA. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of (Arisaema jacquemontii) Blume. J of Taibah Uni for Sci. 2015 9. 449–454:

Csepreg K, Kocsis M, and Hideg É. On The Spectrophotometric Determination of Total Phenolic and Flavonoid Contents. Acta Biologica Hungarica. 2013; 64(4).500-509. DOI: 10.1556/ABioI.64.2013.4.10.

Tabasum S, Khare S, Jain K. Spectrophotometric Quantification of Total Phenolic, Flavonoid, and Alkaloid Contents of Abrus precatorius L. Seeds. Asian J. of Pharmaceutical and Clinical Res. 2016 ;9( 2). 371-374.

Rhayanne T, Ramos M, Bezerra IC, Ferreira MRA and Soares LAL. Spectrophotometric Quantification of Flavonoids in Herbal Material, Crude Extract, and Fractions from Leaves of (Eugenia uniflora) Linn. Pharmacognosy Res. 2017; 9(3): 253–260. doi: 10.4103/pr.pr_143_16.

Bedloviˇcová1 Z, Strapáˇc I, Baláž M and Aneta Salayová AA. Brief Overview on Antioxidant Activity Determination of Silver Nanoparticles. J. Mol 2020; 25. 3191. doi:10.3390/molecules25143191.

Ismail IA ,Qari SH, Shawer R , Elshaer MM, Dessoky ES, Youssef NH, Hamad NA, Abdelkhalek A, Elsamra IA. Behiry SI. The Application of Pomegranate, Sugar Apple, and Eggplant Peel Extracts Suppresses (Aspergillus flavus) Growth and Aflatoxin B1 Biosynthesis. Pathway. Horticul. 2021; 7. 558.

Murugan K, and Iyer VV. Antioxidant and Antiproliferative Activities of Marine Algae (Gracilaria edulis) and (Enteromorpha lingulata), from Chennai Coast. Inter. J.of Cancer Res.2012; 8(1)15-26. DOI: 10.3923/ijcr.2012.15.26.

Asnaashari M, Farhoosh R, Sharif A. Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem. 2014; 159. 439–444.

Ramesh S, Chandra C, and Venkatesan G. Phytochemical and G.C.‒M.S. analysis of leaf extract of Mimosa pudica l. Inter J of Current Res and Develop.2014;.2 (1): 78 - 87 .

Altemimi A, Lightfoot DA, Kinsel M, Watson DG. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach. Mol. 2015; 20.6611–6625. doi: 10.3390/molecules20046611.

Garcia SP, Morales SA, Segura CA, Fernandez GA. Phenolic-compound-extraction systems for fruit and vegetable samples. Mol. 2010; 15.8813–8826. doi: 10.3390/molecules15128813.

Amjad R, Mubeen B, Ali SS, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Rasool R, Ullah I, Nadeem MS, Kazmi I. Green Synthesis and Characterization of Copper Nanoparticles Using (Fortunella margarita) Leaves. Polymers. 2021; 13. 4364.

Ahmed A, Usman M, Liu QY, Shen YQ, Yu B, Cong HL. Plant mediated synthesis of copper nanoparticles by using (Camelia sinensis) leaves extract and their applications in dye degradation. Ferroelectrics. 2019; 549, 61-69.

Angrasan JM, Subbaiya R. Biosynthesis of copper nanoparticles by Vitis vinifera leaf extract and its antibacterial activity. Inter J. of Current Microbiol and Appl Sci. 2014; 3. 768-774.

Arashisar S, Hisara O, Kayab M, Yanik T. Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets. Inter Of Food Microbiol. 2004; 97. 209–214.

Wiegand I, Kai Hilpert, Robert EW, Hancock. Agar and broth dilution methods were used to determine the minimal inhibitory concentration (M.I.C.) of antimicrobial substances. Nature Protocols. 2008; 3(2). 163–75.

McDonald, J. h. 2009. Handbook of biological statistics. Baltimore: Sparky house Publishing. Preacher, K. J. 2001. calculation for the chi-square test: an interactive calculation tool for chisquare tests of goodness of fit and independence [computer software]. available from

Rushdi MI, Abdel-Rahman IM, Saber H, Attia EZ, Abdelraheem WM, Madkoure HA, Hassan HM, Elmaidomyf AH, and Abdelmohsen UR. Pharmacological 66.and natural products diversity of the brown algae genus Sargassum. RSC Adv, 2020, 10, 24951-24972. DOI: 10.1039/D0RA03576A.

Wasimuzzama K, Atar M, Tausif S, Katekar SM, Rashmi T, Rukhsana RA. Pharmacognostic and Preliminary Phytochemical investigation of Salvadora persica Linn (Salvadoraceae). Res J. of Pharmacog and Phytochem.2010; 2(4) 319-323 Print ISSN: 0975-2331. Online ISSN: 0975-4385.

Benito GI, López RA, Martínez AA, Ballester AR, Falcó E, González CL, Sánchez G, Jesús LSJ, Borrás LI, Segura CA, and Martínez SM. In-Depth Characterization of Bioactive Extracts from Posidonia oceanica Waste Biomass. Mar Drugs. 2019; 17. 409-427. doi:10.3390/md17070409.

Jiménez AM, Rafe B, Anna T, Maria LC, Antonio DH, Núria M. Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems. Estuarine, Coastal and Shelf Sci. 2017;196 (0272-7714).31-44.

Halawany HS. A review on miswak (Salvadora persica) and its effect on various aspects of oral health. The Saudi Dental J. 2012; 24. 63–69.

Kamal M, Gheda SF, Abdel Hamid A, Mohamed TM. Antibacterial and antioxidant activities of Phlorotannins extracted from Sargassum linifolium brown alga. Delta J. of Sci. D.J.S. 2020; 41. 32-38. https://djs.journals.ekb.e.g.

Akhtar J, Siddique KBS, Mujeeb MA. Review on phytochemical and pharmacological investigations of Miswak (Salvadora persica Linn). J Pharm Bioallied Sci. 2011 Jan-Mar; 3(1): 113–117. doi: 10.4103/0975-7406.76488.

Agnihotri S, Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. R.S.C. Adv. 2014; 4. 3974–3983. Doi: 10.1039/C3RA44507K.

Chen J, Chen C, Liang G, Xu X, Hao Q. In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves. J. Carbohydrate Polymers. 2019; 220 (15). 170-175.

Yamamoto O, Sawai J, Hotta M, Sasamoto T. Growth Inhibition of Bacteria by MgO-ZnO Solid-Solution Powders. J. of the Ceramic Society of Japan . 1998; 106 (12).1252-1254. 1998; DOI: 10.2109/jcersj.106.1252.

Seil JT, Webster T. Antimicrobial applications of nanotechnology: Methods and literature Inte. 2012; 7 (27). 67-81. DOI: 10.2147/IJN.S24805PubMedCC BY-NC 3.0.

Gratton SEA, Ropp PA, Pohlhaus PD, Luft CJ, Madden VJ, apier ME, and DeSimone JM. The effect of particle design on cellular internalization pathways. Appl Physical Sci 2008; 105(33).11613-11618.

Harleen K, Kristi P, Rosario MS, Protima R, Erwan R. Artemisia vulgaris tincture-associated synthesis of silver. J. of Physics: Conference Series; Bristol. 2022; 2315 (1). 012027. Doi:10.1088/1742-6596/2315/1/12027.

Talebian N, Amininezhad SM, Doudi M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B. 2013; 5(120). 66-73. doi: 10.1016/j.jphotobiol.2013.01.004 PMID: 23428888.

Yin IX, Zhang Jg, Zhao IS, Mei ML, Li Q , and CH Chu. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine. 2020; 15. 2555–2562. doi: 10.2147/IJN.S246764.

Miller SI. Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Mol mBio. 2016; 7(015). 41-16. doi: 10.1128/mBio.01541-16.

Breijyeh Z, Jubeh B, and Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Mol. 2020; 25(6).1340.doi:10.3390/molecules25061340 PMCID: PMC7144564PMID: 32187986.

Madiga M, Martinko J, Stahl D, and Clark D. Brock Biology of Microorganisms. Madigan, Brock Biology of Microorganisms, Global Edition, 15th edition. 2018; (1064).

Bayat M, Chudinova E, Zargar M, Lyashko M, Louis K, and Kebede AF. Phyto-assisted green synthesis of zinc oxide nanoparticles and its antibacterial and antifungal. Res. on Crops 2019; 20(4). 725-730. DOI: 10.31830/2348-7542.2019. 107.3.

Sadhasivam S, Shapiro OH, Ziv C, Barda O, Zakin V, and Siono E . Synergistic Inhibition of Mycotoxigenic Fungi and Mycotoxin Production by Combination of Pomegranate Peel Extract and Azole Fungicide. Front Microbiol. 2019; 10. 1919. doi: 10.3389/fmicb.2019.01919.

Mahjoub NS, Adel J, Ghith and Alminderej FM. Production of cellulose from Aegagropila Linnaei macroalgae: Chemical modification, characterization, and application for the biosorption of cationic and anionic dyes from water. Project: Bio-polymers and treatment of coloured waters. Inter J of Biologi Macromol. 2019; 135.




How to Cite

Youssef, N. H., Almansori, A. A., Shams, A. H., Sabra, M. A., & Pousy A. (2024). Role of New Nanosized Feed Additives as Inhibitors of Certain Gram-Positive and Gram-Negative Bacteria and as Anti-Mycotoxigenic Agents. Tropical Journal of Natural Product Research (TJNPR), 8(6), 7355–7367.