Evaluation of the Physicochemical, Antimicrobial and in vivo Wound Healing Properties of Castor Oil-Loaded Nanogels
Main Article Content
Abstract
Medicinal plants are used exclusively to treat and manage different diseases, especially in poor communities. Castor oil was reported to have potent antibacterial, antifungal, and leishmanicidal activity. This study was conducted to assess the physicochemical, antimicrobial, and in vivo wound healing properties of castor oil-loaded nanogels. Castor oil was extracted from powdered castor beans by solvent extraction using hexane. The extracted castor oil (oil phase ) was combined with Tween 80 (surfactant) and polyethylene glycol (cosurfactant) and was mixed with distilled water as the aqueous phase using the titration method to prepare castor oil-loaded nanoemulsion The optimized nanoemulsion, NM2 was used to prepare nanogels using either carbopol or sodium carboxymethylcellulose as gel base. The extracted castor oil, nanoemulsions, and nanogels were assessed for their physicochemical and antimicrobial properties In vivo wound healing and skin irritation studies were conducted using nanogel formulation BF5. The extracted castor oil, nanoemulsions, and nanogels showed good antimicrobial activity against the test organisms. The nanoemulsions have an average droplet size of 78.71 nm (NM1) and 72.30 nm (NM2) and polydispersity index of 0.402 (NM1) and 0.222 (NM2). The nanogels prepared with sodium carboxymethylcellulose gel base have slightly better physicochemical properties, like spreadability and extrudability than those prepared using carbopol gel base however, they were less stable after one-month storage under room temperature. The wound healing activity of the castor oil-loaded nanogel was comparable to the activity of a marketed product, gentamicin ointment but unlike the ointment it will be more acceptable to the patient due to its non-greasy nature.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Momoh AO, Oladunmoye MK, Adebolu TT. Evaluation of the Antimicrobial and Phytochemical Properties of Oil from Castor Seeds (Ricinus communis Linn). Bull. Environ. Pharmacol. Life Sci. 2012; 1(10): 21–27.
Zarai Z, Chobba IB, Mansour RB, Békir A, Gharsallah N, Kadri A. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids in Health and Disease 2012; 11:102.
Al-Mamun MA, Akter Z, Uddin MJ, Ferdaus KMKB, Hoque KMF, Ferdousi Z, Reza MA. Characterization and evaluation of antibacterial and antiproliferative activities of crude protein extracts isolated from the seed of Ricinus communis in Bangladesh. BMC Complement Altern Med. 2016; 16:211. DOI: 10.1186/s12906-016-1185-y
Rampadarath S, Puchooa D. In vitro antimicrobial and larvicidal properties of wild Ricinus communis L. in Mauritius. Asian Pac J Trop Biomed 2016; 6(2): 100–107. DOI: 10.1016/j.apjtb.2015.10.011
Dulal S, Chaudhary S, Dangi C, Sah SN. Antibacterial Effect of Essential Oils (Clove Oil, Castor Oil and Ginger Oil) Against Human Pathogenic Bacteria. Int. J. Appl. Sci. Biotechnol. 2021; 9(4): 250-255. DOI: 10.3126/ijasbt.v9i4.41890
Youssef AAA, Thakkar R, Senapati S, Joshi PH, Dudhipala N, Majumdar S. Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections. Pharmaceutics 2022; 14: 1246. DOI: 10.3390/pharmaceutics14061246
Gul H, Naseer RD, Abbas I, Khan EA, Rehman HU, Nawaz A, Azad AK, Albadrani GM, Altyar AE, Ashraf Albrakati A, Abdel-Daim MM. The Therapeutic Application of Tamarix aphylla Extract Loaded Nanoemulsion Cream for Acid-Burn Wound Healing and Skin Regeneration. Medicina 2023; 59: 34. DOI: 10.3390/medicina59010034
Miastkowska M, Kulawik-Pióro A, Szczurek M. Nanoemulsion Gel Formulation Optimization for Burn Wounds: Analysis of Rheological and Sensory Properties. Processes 2020; 8: 1416. DOI: 10.3390/pr8111416
Samanci B, Yener FG, Değim İT. Nanoemulsions a New Topical Drug Delivery System for the Treatment of Acne. J Res Pharm. 2023; 27(1): 1-12.
Algahtani MS, Ahmad MZ, Nourein IH, Albarqi HA, Alyami HS, Alyami MH, Alqahtani AA, Alasiri A, Algahtani TS, Mohammed AA, Ahmad J. Preparation and Characterization of Curcumin Nanoemulgel Utilizing Ultrasonication Technique for Wound Healing: In Vitro, Ex Vivo, and
In Vivo Evaluation. Gels 2021; 7: 213. DOI: 10.3390/gels7040213
Taufik M, Rizal S, Harnelly E, Muhammad S, Syahrizal D, Prajaputra V, Isnaini N. The Therapeutic Potential of Aceh Patchouli Oil (Pogostemon cablin Benth.) in Enhancing Full-Thickness Wound Healing in Mice. Trop J Nat Prod Res. 2024; 8(1):5840-5844. DOI: 10.26538/tjnpr/v8i1.19
Tyavambiza C, Dube P, Goboza M, Meyer S, Madiehe AM, Meyer M. Wound Healing Activities and Potential of Selected African Medicinal Plants and Their Synthesized Biogenic Nanoparticles. Plants 2021; 10: 2635. DOI: 10.3390/plants10122635
Maroyi A. An ethnobotanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe. J. Ethnopharmacol. 2011; 136: 347–354.
Yahaya E. Cordier W. Steenkamp P. Steenkamp V. Effect of ethnomedicinal extracts used for wound healing on cellular migration and intracellular reactive oxygen species release in SC-1 fibroblasts. South Afr. J. Bot. 2018; 118: 11–17.
Farahpour, M.R. Medicinal plants in wound healing. Wound Heal. Curr. Perspect. 2019; 2019: 33–47.
Annan, K.; Houghton, P.J. Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana. J. Ethnopharmacol. 2008; 119: 141–144.
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluation of antimicrobial activity: A review, J Pharm Anal, 2015; 6(2): 71-79.
Yadav D, Mazumder A, Khar RK. Preparation and Characterization of Mucoadhesive Nanoemulsion containing Piperine for Nasal Drug Delivery System. Research J. Pharm. and Tech. 2021; 14(5):2381-2386. DOI: 10.52711/0974-360X.2021.00420
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine (Lond.) 2018; 13(19): 2507–2525.
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 2015; 5:123–127. DOI: 10.1007/s13205-014-0214-0
Okafo SE, Enwa FO, Amusile O. Formulation and Evaluation of Antimicrobial Properties of Psidium guajava Ethanol Leaf Extract Creams. Trop. J. Nat. Prod. Res., 2021; 5(12): 2144-2148
Prasetyo BE, Laila L, Hanum TI. Physical Characterization of Nanoemulgel containing Ethanol Extract of Curcuma mangga Val. using Carbopol 940 as Gelling agent. Research J. Pharm. and Tech. 2022; 15(7): 3020-3024. DOI: 10.52711/0974-360X.2022.00504
Nishal S, Jhawat V, Phaugat P, Dutt R. Formulation and Quality Control Tests for Nanoemulsion of Tofacitinib: A Novel Approach. J Pharm Res Int, 2021; 33(50A): 224-234. DOI: 10.9734/JPRI/2021/v33i50A33399
Ali F, Habibullah S, Giri Y, Behera A, Mohanty B. Formulation and evaluation of acetazolamide loaded in–situ gel for the treatment of Glaucoma. J Res Pharm. 2023; 27(1): 74-85. DOI: 10.29228/jrp.291
Okafo SE, Alalor CA, Israel NC, Agbamu E. Evaluation of naproxen-loaded emulgels formulated using Moringa oleifera seed oil. Int J Bio Pharm Allied Sci, 2022; 11(11): 5315-5331.
Ordu JI, Sunday BR, Okafo SE. Evaluation of the activity of Garcinia kola seed oil and honey on skin cream formulation. Pharma Innovation 2018; 7(5): 675-681.
Avbunudiogba JA, Okafo SE, Nwobi CL. Antimicrobial investigation, Formulation and Evaluation of Andrographis paniculata aqueous herbal cream for topical application Research J. Pharm. and Tech. 2022; 15(8):3553-3558. DOI: 10.52711/0974-360X.2022.00596
Raju K, Sneha G, Khatoon R, Ashwini M, Shirisha G, Ajay B, Narender BJ. Formulation and Evaluation of ornidazole topical emulgel. World J Pharm. Pharm. Sci 2019; 8(7): 1179-1197.
Okafo SE, Anie CO, Omoh JO. Evaluation of herbal creams formulated using ethanolic extract of Carica papaya leaves. Int J Bio Pharm Allied Sci. 2022; 11(5): 2179-2190. DOI: 10.31032/IJBPAS/2022/11.5.5942
Okafo SE, Anie CO, Alalor CA, Nwankwo LU. Evaluation of physicochemical and antimicrobial properties of creams formulated using Pterocarpus santalinoides seeds methanol extract. J Appl Pharm Sci 2023; 13(05) : 1-10. DOI: 10.7324/JAPS.2023.19934
Giri M.A., Bhalke R.D. Formulation and evaluation of topical anti-inflammatory herbal gel. Asian J Pharm Clin Res, 2019; 12(7): 252-255.
Okafo SE, Iwetan BB, Odiri OO, Nwankwo LU. Anti-inflammatory Property of Gels Formulated using Dacryodes edulis Bark Ethanol Extract. Afr. J. Biomed. Res. 2022; 25(3): 413–418. DOI: 10.4314/ajbr.v25i3.18.
Algahtani MS, Ahmad MZ, Shaikh IA, Abdel-Wahab BA, Nourein IH, Ahmad J. Thymoquinone Loaded Topical Nanoemulgel for Wound Healing: Formulation Design and In-Vivo Evaluation. Molecules 2021; 26:3863. DOI: 10.3390/molecules26133863
Demilew W, Adinew GM, Asrade S. Evaluation of the Wound Healing Activity of the Crude Extract of Leaves of Acanthus polystachyus Delile (Acanthaceae). J Evid Based Complement Altern Med 2018, Article ID 2047896, 9 pages DOI: 10.1155/2018/2047896
Odesanya KO, Olasheu TI, Adebiyi KA, Durowoju M. Determination Of Some Physical Properties Of Castor (Ricinus Communis) Oil. Int J Sci Eng Tech, 2014; 3(12): 1503-1508.
Khaliq IH, Naeem B, Abbas Q, Khalid S. Chemical Composition and Oil Characterization of Some Accessions of Ricinus communis Seeds. J Bus Fin Aff, 2017; 6: 240. DOI: 10.4172/2167-0234.1000240
Gurpreet K, Singh SK. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J Pharm Sci 2018; 80(5): 781-789.
Ali A, Ali A, Rahman MA, Warsi MH, Yusuf M, Alam P. Development of Nanogel Loaded with Lidocaine for Wound-Healing: Illustration of Improved Drug Deposition and Skin Safety Analysis. Gels 2022; 8: 466. https://doi.org/10.3390/gels8080466
Wahyuni R, Lucida H, Revilla G, Ismed F, Zaini E. Preparation and Characterization of Usnic Acid Nanocrystals with the Wet Grinding Method Using a Planetary Ball Mill. Trop J Nat Prod Res. 2024; 8(1):5801- 5805. DOI: 10.26538/tjnpr/v8i1.13
Pakan P, Indriarini D, Amat ALS, Wungouw HPL. Topical Antibacterial Therapy from Moringa oleifera Extract Against Staphylococcus epidermidis. Trop J Nat Prod Res. 2023; 7(10):4182-4185. DOI: 10.26538/tjnpr/v7i10.10
Okafo SE, Akpo CO, Okafor CC. Formulation and evaluation of antimicrobial herbal creams from aqueous extract of Moringa oleifera lam seeds, Nig J Sci Environ, 2020; 18(1): 50-57.
Lestari NRD, Cahyaningrum SE, Herdyastuti N, Setyarini W, Arizandy RY. Antibacterial and Wound Healing Effects of Chitosan-Silver Nanoparticle and Binahong (Anredera cordifolia) Gel Modified with Cinnamon Essential Oil. 42.Trop J Nat Prod Res. 2024; 8(1):5936-5945. DOI: 10.26538/tjnpr/v8i1.32
Desai AR, Vijapur LS, Teradale SR, Madhushree. Formulation and Evaluation of Gel Containing Anthocyanin of Punica Granatum L. Extract for Anti-Inflammatory and Anti-Microbial Activity. RGUHS J Pharm Sci, 2022; 12(3):1-10.
Desai AR, Vijapur LS, Madhushree, Naraboli P. Formulation & Evaluation of ointment containing anthocyanin of Garcinia indica: A single arm open label study. J Res Pharm. 2023; 27(4): 1547-1559.
Wang F, Sun Z, Li X, Wang K, Chen D, Li Z. Study on factors influencing the viscosity of sodium carboxymethylcellulose used in capsule-mucous sealers, J Geofluid, 2022: 1-9.
Vlaia L, Coneac G, Olariu I, Vlaia V, Lupuleasa D. Cellulose-Derivatives-Based Hydrogels as Vehicles for Dermal and Transdermal Drug Delivery. Emerging Concepts in Analysis and Applications of Hydrogels. InTech. 2016; Available at: DOI: 10.5772/63953
Kurup TRR, Wan LSC, Chan LW. Interaction of preservatives with macromolecules. Part II. Cellulose derivatives. Pharm Acta Helv, 1995; 70(2):187-193.
Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, Shiferaw Y, Lulekal E. Evaluation of Skin Irritation and Acute and Subacute Oral Toxicity of Lavandula angustifolia Essential Oils in Rabbit and Mice. J Toxicol, 2019, Article ID 5979546, 8 pages DOI: 10.1155/2019/5979546
Chellathurai BJ, Anburose R, Alyami, MH, Sellappan M, Bayan MF, Chandrasekaran B, Chidambaram K, Rahamathulla M. Development of a Polyherbal Topical Gel for the Treatment of Acne. Gels, 2023; 9: 163. DOI: 10.3390/gels9020163
Akhtar A, Waqas MK, Mahmood A, Tanvir S, Hussain T, Kazi M, Ijaz M, Asim MH. Development and Characterization of Thiolated Cyclodextrin-Based Nanoparticles for Topical Delivery of Minoxidil. Pharmaceutics 2023; 15: 2716. DOI: 10.3390/ pharmaceutics15122716