Biofilm Formation by Polymicrobial Interactions between Candida albicans with Staphylococcus aureus and Enterococcus faecalis
Main Article Content
Abstract
Biofilm polymicrobial infections have gained international attention, especially cases involving fungi and bacteria. Such infections require patients to undergo costly, extended hospital stays and have caused a considerable amount of morbidity and mortality. Polymicrobial biofilms also have greater mortality rates than monomicrobial biofilms. This study aims to evaluate the overall biomass of biofilms produced by Candida albicans interacting with two Gram-positive bacteria: E. faecalis and S. aureus. Tryptic Soy Broth (TSB) medium were used for the bacterial and fungal suspensions. Three 96-well microplates were used for the biofilm cultivation. The microplates were then incubated for 24, 48, and 72 hours at 37˚C. Next, after conducting the Crystal Violet test, the biofilms’ Optical Density (OD) values were measured by an ELISA reader. The mixed species treatment of Candida albicans with S. aureus for 72 hours had the highest average OD value (OD ± SD = 0.903 ± 0.050), while the mixed species treatment of Candida albicans with E. faecalis for 24 hours had the lowest average OD value (OD ± SD = 0.240 ± 0.032). In conclusion, the parameters observed in this study revealed that biofilms could be formed well by polymicrobial interactions between Candida albicans and two Gram-positive bacteria: S. aureus and E. faecalis.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Wu PF, Liu WL, Hsieh MH, Hii IM, Lee YL, Lin YT, Ho MW, Liu CE, Chen YH, Wang FD. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;6(10):e87.
Carolus H, Van DK, Van DP. Candida albicans and Staphylococcus Species: A Threatening Twosome. Front Microbiol. 2019;10:2162.
O'Donnell LE, Millhouse E, Sherry L, Kean R, Malcolm J, Nile CJ, Ramage G. Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Res. 2015;15(7):fov077.
Kong EF, Tsui C, Kucharíková S, Andes D, Van DP, Jabra RMA. Commensal Protection of Staphylococcus aureus against Antimicrobials by Candida albicans Biofilm Matrix. mBio. 2016;7(5):e01365-16.
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel). 2017;3(2):22.
Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci U S A. 2017;114(17):4507-4512.
Präbst K, Engelhardt H, Ringgeler S, Hübner H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol Biol. 2017;1601:1-17.
Corte L, Casagrande Pierantoni D, Tascini C, Roscini L, Cardinali G. Biofilm Specific Activity: A Measure to Quantify Microbial Biofilm. Microorganisms. 2019;7(3):73.
Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules. 2018;8(2):29.
Zuza ADL, Silva RWP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017;8:1927.
Bisht K, Baishya J, Wakeman CA. Pseudomonas aeruginosa polymicrobial interactions during lung infection. Curr Opin Microbiol. 2020;53:1-8.
Peters BM, Jabra RMA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 2012;25(1):193-213.
Todd OA, Fidel PL Jr, Harro JM, Hilliard JJ, Tkaczyk C, Sellman BR, Noverr MC, Peters BM. Candida albicans Augments Staphylococcus aureus Virulence by Engaging the Staphylococcal agr Quorum Sensing System. mBio. 2019;10(3):e00910-19.
Hager CL, Isham N, Schrom KP, Chandra J, McCormick T, Miyagi M, Ghannoum MA. Effects of a Novel Probiotic 14.Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms. mBio. 2019;10:10.1128/mbio.00338-19.
Prasad, R. Candida albicans: Cellular and Molecular Biology (2nd ed.). India: Springer Cham; 2017.
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42(3):335-352.
Kong EF, Kucharíková S, Van Dijck P, Peters BM, Shirtliff ME, Jabra-Rizk MA. Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease. Infect Immun. 2015;83(2):604-613.
Pires RH, Montanari LB, Martins CH, Zaia JE, Almeida AM, Matsumoto MT, Mendes-Giannini MJ. Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia. 2011;172(6):453-464
Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46 Suppl 5(Suppl 5):S350-S359.
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, Bruno VM, Jabra-Rizk MA. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12(1):835-851.
Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial Quorum Sensing and Microbial Community Interactions [published correction appears in MBio. 2018 Oct 2;9(5):]. mBio. 2018;9(3):e02331-17.
Ramage G, Saville SP, Wickes BL, López-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68(11):5459-5463.
Bandara HMHN, Wood DLA, Vanwonterghem I, Hugenholtz P, Cheung BPK, Samaranayake LP. Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing. Sci Rep. 2020;8;10(1):7769.
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel). 2020;6(3):99.
Krause J, Geginat G, Tammer I. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. PLoS One. 2015;10(8):e0135404.
Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol. 2013;13:257.
He Z, Liang J, Zhou W, Xie Q, Tang Z, Ma R, Huang Z. Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis. Eur J Oral Sci. 2016;124(3):234-240.
Ali IAA, Lévesque CM, Neelakantan P. Fsr quorum sensing system modulates the temporal development of Enterococcus faecalis biofilm matrix. Mol Oral Microbiol. 2022;37(1):22-30.
Ali L, Goraya MU, Arafat Y, Ajmal M, Chen JL, Yu D. Molecular Mechanism of Quorum-Sensing in Enterococcus faecalis: Its Role in Virulence and Therapeutic Approaches. Int J Mol Sci. 2017;18(5):960.
Krishnamoorthy AL, Lemus AA, Solomon AP, Valm AM, Neelakantan P. Interactions between Candida albicans and Enterococcus faecalis in an Organotypic Oral Epithelial Model. Microorganisms. 2020;8(11):1771.
Zeise KD, Woods RJ, Huffnagle GB. Interplay between Candida albicans and Lactic Acid Bacteria in the Gastrointestinal Tract: Impact on Colonization Resistance, Microbial Carriage, Opportunistic Infection, and Host Immunity. Clin Microbiol Rev. 2021;34(4):e0032320.
Hamzah H, Pratiwi SUT, Nur A, Nuryastuti T, Pratama VY, Riza Maulana R. Antibacterial and Antibiofilm Activities of Ternate Blue Pea Clitoria ternatea Flower Extract against Staphylococcus aureus. Trop J Nat Prod Res. 2024; 8(1):5992 5996.
Helmi M, Ibrahem H. Effect of Lactobacillus Species on the Expression of Gene Related to Biofilm Formation by Streptococcus mutans. Trop J Nat Prod Res. 2021; 5(3):445-447.