Phytochemical Constituents, Anti-Diabetic and Antioxidant Activities of Methanol Extracts of <i>Diospyros malabarica</i> (Desr.) Kostel Leaves and Stem Bark

Authors

  • Wening Dharmastuti Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
  • Berna Elya Department of Phytochemistry and Pharmacognosy, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, 16424, Indonesia
  • Muhammad Hanafi Research Center of Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15314, Indonesia
  • Puspa D. N. Lotulung Research Center of Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15314, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i5.29%20

Keywords:

Anti-diabetic, Alpha-glucosidase, DPP-4, Antioxidant, Diospyros malabarica (Desr.) Kostel

Abstract

Diospyros malabarica (Desr.) Kostel is widely used in traditional medicine as an antioxidant and anti-diabetic agent. This study aims to evaluate the phytochemical constituents, the antioxidant and anti-diabetic activities of the methanol leaf extract (MLE) and methanol stem bark extract (MBE) of Diospyros malabarica. The extracts were obtained by Ultrasound-Assisted Extraction (UAE). Phytochemical screening was done using standard methods. The total phenolic content (TPC) and total flavonoid content (TFC) were determined using the Folin-Ciocalteau and Aluminium chloride colorimetric methods, respectively. The antidiabetic activity was assessed using α-glucosidase and dipeptidyl peptidase-4 (DPP-4) inhibitory assays. The antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and Ferric Reducing Antioxidant Power (FRAP) assays. The results showed that the TPC (621.31 ± 0.74 mgGAE/g) and TFC (32.86 ± 0.31 mgQE/g) of MBE are 14 times higher than that of MLE with TPC and TFC of 42.83 ± 0.15 mgGAE/g, and 2.37 ± 0.02 mgQE/g, respectively. MBE also showed higher antioxidant and anti-diabetic activities than MLE. The IC50 values of MBE for DPPH radical scavenging, ABTS radical scavenging, and FRAP activities were 8.04 ± 0.05 µg/mL, 2.61 ± 0.03 µg/mL, and 6803.86 µMFSE/g, respectively. For the anti-diabetic activity, MBE had IC50 values of 14.36 ± 0.21 µg/mL, and 205.39 ± 2.94 µg/mL for α-glucosidase, and DPP-4 inhibitory activities, respectively. Therefore, the stem bark of D. malabarica has better anti-diabetic and antioxidant activities than the leaves, and thus has a potential for use as an antioxidant and anti-diabetic agent.

Author Biography

Muhammad Hanafi, Research Center of Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Serpong 15314, Indonesia

Department of Phytochemistry, Faculty of Pharmacy, Pancasila University, South Jakarta, Jakarta, 12640, Indonesia

References

Harun Al Rashid M, Majumder S, Mandal V, Mandal SC, Thandavarayan RA. In search of suitable extraction technique for large scale commercial production of bioactive fraction for the treatment of diabetes: The case Diospyros melanoxylon Roxb. J Trad Complement Med. 2019; 9(2):106–118.

Purnomo Y, Taufiq M, Wijaya AND, Hakim R. Molecular Docking of Soybean (Glycine max) Seed and Ginger (Zingiber officinale) Rhizome Components as Anti-Diabetic Through Inhibition of Dipeptidyl Peptidase 4 (DPP-4) and Alpha-Glucosidase Enzymes. Trop J Nat Prod Res. 2021; 5(10):1735–1742.

Srakeaw W, Maneechai S, Katisart T. Antioxidant and α-glucosidase inhibitory activities of Dolichandrone serrulata extracts. Trop J Nat Prod Res. 2021; 5(6):1039–1043.

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress - A concise review. Saudi Pharm J. 2016; 24(5):547–553.

Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When bad guys become good ones: The key role of reactive Oxygen species and Nitric Oxide in the plant responses to abiotic stress. Front Plant Sci. 2016; 7:471.

Tahir H, Ahmed W, Siddique I, Anees-Ur-rehman M, Tahir A, Majeed MS, et al. Assessment of Antioxidant Activity of Stigma maydis Extract/Corn Silk Extract and Exploring its Efficacy Against Hyperglycemia in Diabetic Rats. Trop J Nat Prod Res. 2023; 7(11):5040–5045.

Katzung BG, Kruidering-Hall M, Trevor AJ. Katzung & Trevor’s Pharmacology Examination & Board Review. 12th Edition. 2019.

Sagbo IJ, Van De Venter M, Koekemoer T, Bradley G. In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid-Based Complement Alternat Med. 2018; 2018:4170372.

Mondal SK, Chakraborty G, Gupta M, Mazumder UK. In vitro antioxidant activity of Diospyros malabarica Kostel bark. Indian J Exp Biol. 2006; 44(1):39-44.

Moniruzzaman M, Kuddus MR, Chowdhury AS, Rashid MA. Antioxidant, Antimicrobial, Anti-diarrheal and Analgesic Activities of Diospyros malabarica (Desr.) Kostel. Bangladesh Pharm J. 2019; 22(1):27–33.

Kim HS, Lee SW, Sydara K, Cho SJ. Antibacterial and Antibiofilm Activities of Diospyros malabarica Stem Extract against Streptococcus mutans. J Life Sci. 2019; 29(1):90–96.

Ramaiah M, Uma Rani NT, Harshitha NH, Priya PS, Sruthi T. Investigation of In vitro Anthelmenthic Activity of Diospyros malabarica (Kostel Bark). Int J Pharmacogn Phytochem Res. 2017; 9(8):1135-1137.

Shrestha R, Dawadi P, Bhusal S, Bhatt LR. Nutritional value and antioxidant properties of Diospyros malabarica (Desr.) Kostel., fruit from midhills of western Nepal. Nepal J Sci Technol. 2021; 20(1):113–125.

Ogata Y, Kasahara Y, Mulyadi, Rachmat A, Jamaluddin, Royadi B, et al. Medicinal Herb Index in Indonesia. Second Edition. Iwasaki T, editor. PT Eisai Indonesia; 1995. 1–453 p.

Zreen Z, Hameed A, Kiran S, Farooq T, Zaroog MS. A Comparative Study of Diospyros malabarica (Gaub) Extracts in Various Polarity-Dependent Solvents for Evaluation of Phytoconstituents and Biological Activities. Biomed Res Int. 2022; 2022:1–16.

Kavatagimath SA and Jalalpure SS. Screening of Ethanolic Extract of Diospyros malabarica Desr. Bark for Anti-diabetic and Antioxidant Potential. Indian J Pharm Educ. 2016; 50(1):179–189.

Pawan K, Goswami DV, Jain SK, Prajapati N. Pharmacological investigation on methanolic extract of leaves of Diospyros peregrina Gurke on alloxan induced hyperglycemia in rats. J. Drug Deliv. Ther. 2011; 1(1):60–64.

Watrelot AA and Bouska L. Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes. Food Chem. 2022; 386:132703.

Shubhra RD, Polash SA, Saha T, Hasan A, Hossain S, Islam Z, et al. Investigation of the Phytoconstituents and Antioxidant Activity of Diospyros malabarica Fruit Extracts. Adv Biosci Biotechnol. 2019; 10(12):431–454.

Wu J, Lin L and Chau FT. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason Sonochem. 2001; 8(4):347–352.

Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. Sci World J. 2017; 2017:5873648.

Nur S, Sami FJ, Marwati M, Nursamsiar N, Fadri A, Khairuddin K. Phenolic and Flavonoid Content of Black Mulberry (Morus nigra L.) Stem and Their Evaluation Antioxidant and Cytotoxic Profile. Borneo J Pharm. 2022; 5(4):384–395.

Desmiaty Y and Elya B. Unripe fruit of Rubus fraxinifolius as a potential source of antioxidant and antielastase agent. Int J Appl Pharm. 2021; 13(Special Issue 2):78–81.

Elya B, Handayani R, Sauriasari R, Azizahwati, Hasyyati US, Permana IT, et al. Antidiabetic activity and phytochemical screening of extracts from indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pak J Biol Sci. 2015; 18(6):273–278.

Arabiyat S, Kasabri V, Al-Hiari Y, Al-Masri I, Alalawi S, Bustanji Y. Dual Glycation-Inflammation Modulation, DPP-IV and Pancraetic Lipase Inhibitory Potentials and Antiproliferative Activity of Novel Fluoroquinolones. Asian Pac J Cancer Prev. 2019; 20(8):2503.

Ernawati, Suryadi H, Mun’im A. Effect of gamma irradiation on the caffeoylquinic acid derivatives content, antioxidant activity, and microbial contamination of Pluchea indica leaves. Heliyon. 2021; 7(8):e07825.

Tungjai M, Sukantamala S, Malasaem P, Dechsupa N, Kothan S. An evaluation of the antioxidant properties of iodinated radiographic contrast media: An in vitro study. Toxicol Rep. 2018; 5:840–845.

Arianti V, Elya B, Iskandarsyah. Anti-Elastase, Antioxidant, Total Phenolic and Total Flavonoid Content of Wuru Ketek (Myrica javanica Reinw. Ex BL.) from Tangkuban Perahu, West Java - Indonesia. Pharmacogn J. 2020; 12(2):293–297.

Nur S, Mubarak F, Jannah C, Winarni DA, Rahman DA, Hamdayani LA, et al. Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Res. 2019; 3(6):734–740.

Abd Aziz NA, Hasham R, Sarmidi MR, Suhaimi SH, Idris MKH. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharm J. 2021; 29(2):143–165.

Syahir A, Sulaiman S, Mel M, Othman M, Zubaidah Sulaiman S. An Overview: Analysis of ultrasonic-assisted extraction’s parameters and its process. In IOP Conf Ser Mater Sci Eng. Institute of Physics Publishing; 2020.

Alfauzi RA, Hartati L, Suhendra D, Rahayu TP, Hidayah N. Ekstraksi Senyawa Bioaktif Kulit Jengkol (Archidendron jiringa) dengan Konsentrasi Pelarut Metanol Berbeda sebagai Pakan Tambahan Ternak Ruminansia. J Ilmu Nutr Teknol Pakan. 2022; 20(3):95–103.

Mahasuari NPS, Paramita NLPV, Yadnya Putra AAGR. Effect of Methanol Concentration as a Solvent on Total 33.Phenolic and Flavonoid Content of Beluntas Leaf Extract (Pulchea indica L.). J Pharm Sci Applic. 2020; 2(2):77.

Sharma S, Deshar R, Rianse U, Kusmaryono Y, Zamrun F.M, Analuddin, et al. Proceeding Celebes International Conference on Diversity of Wallacea’s Line (CICDWL 2015): Sustainable Management of Geological, Biological, and Cultural Diversities of Wallacea’s Line toward A Millennium Era. 2015. 181 p.

Senapati MR and Behera PC. Novel extraction conditions for phytochemicals. In: Siddhartha Pati, Tanmay Sarkar, Dibyajit Lahiri (Eds). Recent Frontiers of Phytochemicals, Chapter 3, Elsevier, 2023; 27–61 p.

Nur S, Hanafi M, Setiawan H, Elya B. In vitro ultra-violet (UV) protection of Curculigo latifolia extract as a sunscreen candidate. IOP Conf Ser Earth Environ Sci. 2022; 1116(1):012009.

Ilmi HM, Elya B, Handayani R. Association between total phenol and flavonoid contents in Artocarpus heterophyllus (jackfruit) bark and leaf extracts and lipoxygenase inhibition. Int J Appl Pharm. 2020; 12(Special Issue 1):252–256.

Dominguez-López I, Pérez M, Lamuela-Raventós RM. Total (poly)phenol analysis by the Folin-Ciocalteu assay as an anti-inflammatory biomarker in biological samples. Crit Rev Food Sci Nutr. 2023:1-7.

Martins GR, Monteiro AF, do Amaral FRL, da Silva AS. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. J Food Sci Technol. 2021; 58(12):4693.

Assefa ST, Yang EY, Chae SY, Song M, Lee J, Cho MC, et al. Alpha Glucosidase Inhibitory Activities of Plants with Focus on Common Vegetables. Plants (Basel). 2020; 9(1):2.

Nur S, Wierson Y, Sami FJ, Megawati, Gani SA, Aisyah AN, et al. Characterization, antioxidant and α-glucosidase inhibitory activity of collagen hydrolysate from lamuru (Caranx ignobilis) fishbone. Sains Malay. 2021; 50(8):2329–2341.

Tupas GD, Otero MCB, Ebhohimen IE, Egbuna C, Aslam M. Antidiabetic lead compounds and targets for drug development. In: Chukwuebuka Egbuna, Shashank Kumar, Jonathan C. Ifemeje, Shahira M. Ezzat, Saravanan Kaliyaperumal, (Eds), Phytochemicals as Lead Compounds for New Drug Discovery, Chapter 8, Elsevier, 2020; 127–141 p.

Mondal SK, Chakraborty G, Bhaumik UK, Gupta M, Mazumder UK. Antidiabetic activity of Diospyros malabarica Kostel bark: a preliminary investigation for possible mode of action. Adv Trad Med. 2008; 8(3):236–242.

Dubois V, Lambeir AM, Van Der Veken P, Augustyns K, Creemers J, Chen X, et al. Purification and characterization of a dipeptidyl peptidase 9-like enzyme from bovine testes. Front Biosci. 2008; 13(9):3558–3568.

Matheeussen V, Lambeir AM, Jungraithmayr W, Gomez N, Mc Entee K, Van der Veken P, et al. Method comparison of dipeptidyl peptidase IV activity assays and their application in biological samples containing reversible inhibitors. Clin Chim Acta. 2012; 413(3–4):456–462.

Ansari P, Hannon-Fletcher MP, Flatt PR, Abdel-Wahab YHA. Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci Rep. 2021; 41(1): BSR20203824.

You H, Zhang Y, Wu T, Li J, Wang L, Yu Z, et al. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT. 2022; 160:113255.

Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol. 2011; 48(4):412.

Vu D, Nguyen T, Vo XT. Influence of Green Solvent Extraction on Phytochemicals, Potential Antidiabetic and In Vitro Anti-Inflammatory Activities of Pseuderanthemum palatiferum (Nees.) Radlk. Leaves. Trop J Nat Prod Res. 2023; 7(1):2215–2219.

Marchi RC, Campos IAS, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev. 2022; 451:214275.

Hernández-Rodríguez P, Baquero LP, Larrota HR. Chapter 14 - Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity, Editor(s): Maira Rubi Segura Campos, Bioactive Compounds, Woodhead Publishing, 2019. 265-288 p.

Mfotie Njoya E. Medicinal plants, antioxidant potential, and cancer. Cancer: Oxidative

Stress and Dietary Antioxidants. 2021; 349–357.

Singh AK, Yadav D, Sharma N, Jin JO. Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes. Pharm. 2021; 14(6):586.

Dej-Adisai S, Rais IR, Wattanapiromsakul C, Pitakbut T. Alpha-Glucosidase Inhibitory Assay-Screened Isolation and Molecular Docking Model from Bauhinia pulla Active Compounds. Molecules. 2021; 26(19):5970.

Famuyiwa SO, Sanusi K, Faloye KO, Yilmaz Y, Ceylan Ü. Antidiabetic and antioxidant activities: Is there any link between them? New J Chem. 2019; 43(34):13326–13329.

Chhabria S, Mathur S, Vadakan S, Sahoo DK, Mishra P, Paital B. A review on phytochemical and pharmacological facets of tropical ethnomedicinal plants as reformed DPP-IV inhibitors to regulate incretin activity. Front Endocrinol (Lausanne). 2022; 13: 1027237.

Downloads

Published

2024-05-30

How to Cite

Dharmastuti, W., Elya, B., Hanafi, M., & Lotulung, P. D. N. (2024). Phytochemical Constituents, Anti-Diabetic and Antioxidant Activities of Methanol Extracts of <i>Diospyros malabarica</i> (Desr.) Kostel Leaves and Stem Bark. Tropical Journal of Natural Product Research (TJNPR), 8(5), 7249–7258. https://doi.org/10.26538/tjnpr/v8i5.29

Most read articles by the same author(s)