Toxicity of Aqueous Extracts of the Leaves of Sonneratia caseolaris Grown in Ujung Pangkah, Gresik, East Java

Main Article Content

Hartati Kartikaningsih
Feni Iranawati
Lydiane I. Harlan
Jihan N. Fauziyah
Harris I. Fathoni
Maharani P. Koentjoro

Abstract

Local communities have extensively utilized different components of mangrove (Sonneratia caseolaris) plants in traditional medicine. These plants are known for their secondary metabolites, including steroids, triterpenoids, saponins, and flavonoids. S. caseolaris grows in Ujung Pangkah waters in Gresik, East Java, Indonesia, and is known for its proximity to environmental waste. It is believed that environmental factors at this site may contribute to the presence of characteristic bioactive compounds in the plant. In this study, the toxicity, bioactive constituents, and pharmacokinetic potentials of the aqueous extracts of the leaves of S. caseolaris were investigated. S. caseolaris leaves were extracted with methanol, distilled water, and three mineral water products produced and distributed in Indonesia. The toxicity of the aqueous S. caseolaris leaf extracts was tested by determining the LC50 using Artemia salina Leach and a 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay with TIG-1-20 lung fibroblasts. None of the aqueous S. caseolaris leaf extracts were categorized as toxic substances based on the LC50 and MTT assays. The six compounds detected by liquid chromatography high-resolution mass spectrometry (LC–HRMS) in a previous study were analyzed using quantitative structure-activity relationship (QSAR) and absorption, distribution, metabolism, excretion, and toxicity (ADMET) methods. Bis(3,5,5-trimethylhexyl) phthalate and bis(2-ethylhexyl) phthalate were identified as component from S. caesolaris and are known plasticizers. These compounds were suspected to be carcinogenic substances based on QSAR and ADMET analyses, indicating that the environment of S. caseolaris may be a site of plastic waste.

Article Details

How to Cite
Kartikaningsih, H., Iranawati, F., Harlan, L. I., Fauziyah, J. N., Fathoni, H. I., & Koentjoro, M. P. (2024). Toxicity of Aqueous Extracts of the Leaves of Sonneratia caseolaris Grown in Ujung Pangkah, Gresik, East Java. Tropical Journal of Natural Product Research (TJNPR), 8(5), 7213-7220. https://doi.org/10.26538/tjnpr/v8i5.24
Section
Articles

References

Bishwajit B, Md NH Zilani, Hemayet Hossain, Md I Ahmed, Mohammad Anisuzzman, Nripendra N B, Samir K Sadhu. Bioactivities of Sonneratia Caseolaris (Linn) leaf and stem using different solvent systems. Biomed J Sci & Tech Res. 2020; 31(5): 24578-24582. http://dx.doi.org/10.26717/BJSTR.2020.31.005175.

Islamudin Ahmad, Neneng SS Ambarwati, Arif Lukman, Muhammad A Masruhim, Laode Rijai, Abdul Mun’im. In vitro antimicrobial activity evaluation of mangrove fruit (Sonneratia caseolaris L.) extract. Pharmacogno J. 2018; 10, 598–601. https://doi.org/10.55.30/pj.2018.3.98.

Barman AK, Ahmed T, Das H, Biswas B, Ali M, Acharyya R, Sarkar KK, Dev S. Evaluation of antidiabetic potential of extract of Sonneratia caseolaris (L.) Engl. leaves against alloxan-induced diabetes in mice. Trop J Nat Prod Res. 2021; 5, 77-83. https://doi.org/10.26538/tjnpr/v5i1.9.

Eka S Syamsul, Salman Umar, Fatma S Wahyuni, Ronny Martien, Dachriyanus Hamidi. Anti-aging activity, in silico modeling and molecular docking from Sonneratia caseolaris. Maced J Med Sci. 2022; 10, 1471-1477. https://doi.org/10.3889/oamjms.2022.10558.

Thuong T Nguyen, Uyen TT Dao, Quynh PT Bui, Giang L Bach, CNJ Thuc, Huy H Thuc. Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Prog Org Coat. 2020; 140, 105487. https://doi.org/10.1016/j.porgcoat.2019.105487.

Muhaimin, Yusnaidar, Wilda Syahri, Madyawati Latief, Andita Utami, Restina Bemis, Hilda Amanda, Heriyanti, Anin Y Chaerunisaa. Screening and potential analysis of methanolic leaf extract of mangrove plants at east coast Sumatera as repellent against Aedes aegypti. J Pharm Sci & Res. 2018; 10, 2228-2231.

Bishwajit B, Md NH Zilani, Hemayet Hossain, Md I Ahmed, Mohammad Anisuzzman, Nripendra N Biswas, Samir K Sadhu. Bioactivities of Sonneratia caseolaris (Linn) leaf and stem using different solvent systems. Biomed J Sci Tech. Res. 2020; 31, 24578-24582. https://doi.org/10.26717/BJSTR.2020.31.005175.

Mst S Munira, Md A Islam, Md S Islam, Sabiha F Koly, Mst L Nesa, Md A Muhit. Phytochemical screening and comparative antioxidant activities of fractions isolated from Sonneratia caseolaris (Linn.) bark extracts. European J Med Med Plants. 2019; 28(4), 1-9. https://doi.org/10.9734/EJMP/2019/v28i430141.

Madyawati Latief, Muhaimin. The characterization of active compound of Pedada mangrove plants (Sonneratia caseolaris) which have the potential as natural antioxidants. J Chem Nat Res. 2019; 1, 1-11.

Nancy J Morada, Ephrime B Metillo, Mylene M Uy, Jose M Oclarit. Toxicity and hypoglycemic effect of tannin-containing extract from the mangrove tree Sonneratia alba Sm. Bull Environ Pharmacol. Life Sci. 2016; 5, 58-64.

Mahbubur Rahman, Bambang B Sasmito. The effect of dosage of mangrove leaf extract Avicennia marina on the viability of Hela cells. J SCRTE. 2021; 5, 41-51.

Dayane KD Nascimento, Ivone AD Souza, Antonio FMD Oliveira, Mariana O Barbosa, Marllon AN Santana, Daniel FP Junior, Eduardo C Lira, Jeymesson RC Vieira. Phytochemical screening and acute toxicity of aqueous extract of leaves of Conocarpus erectus Linnaeus in Swiss albino mice. Annals of the Braz. Acad Sci. 2016; 88, 1431-1437. http://dx.doi.org/10.1590/001-3765201620150391.

Debijt Ghosh, Sumanta Mondal, K Ramakrishna. Acute and sub-acute (30-day) toxicity studies of Aegialitis rotundifolia Roxb., leaves extract in Wistar rats: safety assessment of a rare mangrove traditionally utilized as pain antidote. Clin Phytoscience. 2019; 5, 1-16. https://doi.org/10.1186/s40816-019-01606-2.

Min Zhao, Han Xiao, Dong Sun, Shunshan Duan. Investigation of the inhibitory effects of mangrove leaves and analysis of their active components on Phaeocystis globosa during different stages of leaf age. Int J Environ Res Public Health. 2018 1;15(11): 2434. https://doi.org/10.3390/ijerph15112434.

Saikat M, Fahadul I, Rajib D, Humaira U, Aklima A, Abubakr MI, Mayeen UK, Mohannad AA, Rohit S, Talha BE. Pharmacological potential of Avicennia alba leaf extract: An experimental analysis focusing on antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activity. BioMed Res Inter. 2022; 7624189, 2022. https://doi.org/10.1155/2022/7624189.

Hosen MZ, Biswas A, Islam MR, Hossain SJ. Anti-bacterial, anti-diarrheal, and cytotoxic activities of edible fruits in the Sundarbans Mangrove Forest of Bangladesh. Prev Nutr Food Sci. 2020; 26(2), 192-199. https://doi.org/10.3746/pnf.2021.26.2.192.

Eko S Syamsul, Salman Umar, Fatma S Wahyuni, Ronny Martien, Dachriyanus Hamidi. Anti-aging activity, in silico modeling and molecular docking from Sonneratia caseolaris. Maced J Med Sci. 2022; 10, 1471-1477. https://doi.org/10.3889/oamjms.2022.10558.

Doan V Thuoc, Nguyen TN Mai, Le TV Ha, Lai D Hung, Dang H Tra, Nguyen K Hung, Nguyen P Hung. Evaluation of anti-bacterial, anti-oxidant and anti-obese activities of the fruit juice of crabapple mangrove Sonneratia caseolaris (Linn.). Int J Agric Sci Nat Res. 2018; 5, 25-29.

Jason Darmadi, Razethy R Batubara, Sandiego Himawan, Norma N Azizah, Hilyatushalihah K Audah, Ade Arsianti, Evi Kurniawaty, Intan S Ismail, Irmanida Batubara, Kholis A Audah. Evaluation of Indonesian mangrove Xylocarpus granatum leaves ethyl acetate extract as potential anticancer drug. Sci Rep. 2021; 11, 6060. https://doi.org/10.1038/s41598-021-85383-3.

Md S Islam, Mst S Munira, Nazma Akther, Sabiha F Koly. Estimation of anti-inflammatory, analgesic, thrombolytic activities of Sonneratia caseolaris Linn. (Family: sonneratiaceae). Int J Unani & Integr Med. 2018; 2, 27-31.

Mahshid Ghasemi, Tyron Turnbull, Sonia Sebastian, Ivan Kempson. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021;26;22(23):12827. https://doi.org/10.3390/ijms222312827.

Priyanka Banerjee, Anreas O Eckert, Anna K Schrey, Robert Preissner. ProTox-II: a web server for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46, W257-638. https://doi.org/10.1093/nar/gky318.

Jie Dong, Ning-Ning Wang, Zhi-Jiang Yao, Lin Zhang, Yan Cheng, Defang Ouyang, Ai-Ping Lu, Dong-Sheng Cao. ADMETlab: platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. 2018; 10, 1-11. https://doi.org/10.1186/s13321-018-0283-x.

Guoli Xiong, Zhenxing Wu, Jiacai Yi, Li Fu, Zhijiang Yang, Changyu Hsieh, Mingzhu Yon, Xiangxiang Zeng, Chengkun Wu, Aiping Lu, Xiang Chen, tingjun Hou, Dongsheng Cao. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021; 49, W5-W14. https://doi.org/10.1093/nar/gkab255.

Kholis A Audah, Jufendi Ettin, Jason Darmadi, Norma N Azizah, Amalda S Anisa, Tedi DF Hermawan, Conny R Tjampakasari, Rudi Heryanto, Intan S Ismail, Irmanida Batubara. Indonesian mangrove Sonneratia caseolaris leaves ethanol extract is a potential super anti-oxidant and anti-methicillin resistant Staphylococcus aureus drug. 25.Molecules. 2022; 27, 8369. https://doi.org/10.3390/molecules27238369.

Thi HT Nguyen, Huu VT Pham, Nyuyen KT Pham, Ngo DP Quach, Khanitha Pudhom, Poul E Hansen, Kim PP Nguyen. Chemical constituents from Sonneratia ovata Backer and their in-vitro cytotoxicity and acetylcholinesterase inhibitory activities. Bioorganic & Med Chem Lett. 2015; 25, 2366-2371. https://dx.doi.org/10.1016/j.bmcl.2015.04.017.

Shi B Wu, Ying Wen, Xu W Li, Yun Zhao, Jin F Hu. Chemical constituents from the fruits of Sonneratia caseolaris and Sonneratia ovata (Sonneratiaceae). Biochem Syst Ecol. 2009; 37, 1-5. https://doi.org/10.1016/j.bse.2009.01.002.

Jubaidah S, Syamsul ES, Wijaya H, Poddar S. Formulation cream from extract of red pidada leaves (Sonneratia caseolaris L.) as a sunscreen and analysis of active compounds with Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) method. Res J Pharm & Techn. 2023; 16, 781-785. https://doi.org/10.52711/0974-360X.2023.00134.

Shrabanti Dev, Rabindra N Acharyya, Sheuly Akter, Md. AA Bari, Kaniz Asma, Hemayet Hossain, Kishore K Sarkar, Nripendra N Biswas, Aish K Das. Toxicological screening and evaluation of anti-allergic and anti-hyperglycemic potential of Sonneratia caseolaris (L.) Engl. fruits. Clin Phytoscience. 2021; 7, 1-13. https://doi.org/10.1185/s40816-021-00301-4.

Amanda LdS Pontes, Véronique C Mesquita, Filipe dO Chaves, Antonio JR da Silva, Maria AC Kaplan, Catharina E Fingolo. Phthalates in Avicennia schaueriana, a mangrove species, in the State Biological Reserve, Guaratiba, RJ, Brazil. Environ Adv. 2020; 2, 100015. https://doi.org/10.1016/j.envadv.2020.100015.

Sudipta K Das, Bikash Das, Atala B Jena, Chinmay Pradhan, Gunanindhi Saho, Jagneshwar Dandapat. Therapeutic potential and ethnopharmacology of dominant mangroves of Bhitarkanika National Park, Odisha, India. Chem & Biodivers. 2022; 19, e202100857. https://doi.org/10.1002/cbdv.2021100857.

Nilesh L Dahibhate, Kundan Kumar. Metabolite profiling of Bruguiera cylindrica reveals presence of potential bioactive compounds. Peer. J Anal Chem. 2022; 4, e16. https://doi.org/10.7717/peerj-achem.16.

Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, Paul J Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv Rev. 2012; 23, 3-25. http://dx.doi.org/10.1016/j.addr.201209.019.

Uddin SJ, Bettadapura J, Guillon P, Darren I Grice, Mahalingam S, Tiralongo E. In-vitro anti-viral activity of a novel phthalic acid ester derivative isolated from the Bangladeshi mangrove fern Acrostichum aureum. J Antivir Antiretrovir. 2013; 5, 139-144. http://dx.doi.org/10.4172/joa.1000078.

Cristiane P Victório, Mayara S dos Santos, Naomi K Simas. Phthalates: environmental pollutants detected in leaf epicuticular wax of Avicennia schaueriana and Rhizophora mangle from a mangrove ecosystem. Int J Environ Stud. 2022; 79, 114-123. https://doi.org/10.1080/00207233.2021.18752.98.

Ulfa G Anjeli, Aida Sartimbul, Titik D Sulistiyati, Defri Yona, Feni Iranawati, Fahreza O Seftiyawan, Dian Aliviyanti, Federico M Lauro, Sabine M Surget, Aigan M Fanda, Victor A Winata. Microplastics contamination in aquaculture-rich regions: A case study in Gresik, East Java, Indonesia. Sci Total Environ. 2024; 927, 171992. https://doi.org/10.1016/j.scitotenv.2024.171992.