Phytochemical Profiling of Balinese Alkaloid-Source Plant Purnajiwa (<i>Kopsia arborea<i> Blume. and <i>Euchresta horsfieldii</i> (Lesch.) Benn.)

Authors

  • Putu E. P. Ariati Department of Agrotechnology, Faculty of Agriculture, Universitas Mahasaraswati Denpasar, Denpasar, Indonesia
  • I Gede P. Wirawan Department of Agricultural Biotechnology, Faculty of Agriculture, Udayana University, Denpasar, Indonesia
  • Maria M.V. Sasadara Department of Natural Medicine, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Denpasar, Indonesia
  • I Made Jawi Department of Pharmacology, Faculty of Medical and Health Science, Udayana University, Bali, Indonesia
  • I Gde N.A. Sunyamurthi Department of Professional Medicine, Faculty of Medicine, Universitas Warmadewa, Bali, Indonesia.
  • I Nyoman Wijaya Department of Agricultural Biotechnology, Faculty of Agriculture, Udayana University, Denpasar, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v8i5.5%20

Keywords:

phytochemical, natural product, Kopsia, Euchresta, Alkaloid

Abstract

Purnajiwa is a popular traditional Balinese plant that grows in several locations in Bali and has been used empirically to treat disease. The latest study confirmed that there were two plants known as Purnajiwa in Bali (Kopsia arborea Blume and Euchresta horsfieldii (Lesch) Benn.) Nevertheless, both plants are still used for the same purpose. The Kopsia and Euchresta genus are sources of novel and bioactive alkaloidal compounds. This research aimed to identify and compare the phytochemicals of Purnajiwa (K. arborea Blume and Euchresta horsfieldii (Lesch) Benn) extract collected from three regions in Bali, namely Jimbaran, Mambal, and Bedugul. The phytochemicals of ethanol crude extract of Purnajiwa fruit and leaves were identified using Gas Chromatography-Mass Spectrometry (GC-MS). The findings revealed an assortment of phytochemicals. Aspidospermidin, kopsinine, quebrachamin, and tabersonin were the alkaloids identified in the K. arborea fruit. There were more alkaloids in K. arborea sample collected from Mambal compared to the Jimbaran sample. In comparison, matrine alkaloids were identified in the fruit and leaves of E.horsfieldii. The results show the influence of habitat and geographic location on the phytochemical profiling of medicinal plants. In conclusion, there are varieties of phytochemicals, especially alkaloids in Purnajiwa (K. arborea Blume. and Euchresta horsfieldii (Lesch.) Benn) collected from three different locations in Bali.

         Views | PDF Download | EPUB Download: 278 / 196 / 16

References

Rabizadeh F, Mirian MS, Doosti R, Kiani-Anbouhi R, Eftekhari E. Phytochemical Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional Persian Medicine. Evid Based Complement Alternat Med. 2022;2022:8022599.

Hop NQ, Son NT. A comprehensive review on phytochemistry and pharmacology of genus Kopsia: monoterpene alkaloids - major secondary metabolites. RSC Adv. 2022;12(30):19171–19208.

Silalahi D, Wirawan IGP, Sasadara MMV. Optimization of annealing temperature for amplification of EhoscnOla locus in pranajiwa (Euchresta horsfieldii) plant collected from mountains, urban and coastal areas in Bali. IOP Conf Ser Earth Environ Sci. 2021;913(1):1-7.

Ariati PEP, Sasadara MMV, Wirawan IGP, Sritamin M, Suada IK, Wijaya IN, Dwiyani R, Sudiarta IP, Darmawati IAP. Application of DNA Barcoding for authentication of Balinese traditional medicinal plant Purnajiwa (Kopsia arborea Blume. and Euchresta horsfieldii) (Lesch.) Benn. Bali Med J. 2022;11(3):1681–1685.

Ariati PEP, Wirawan IGP, Sasadara MMV. Optimization of primer and polymerase chain reaction conditions to amplify COI locus for identification of Purnajiwa (Euchresta horsfieldii (Lesch.) Benn.) collected from Bedugul, Bali. IOP Conf Ser Earth Environ Sci. 2021;913(1):1-6.

Wirawan IGP, Sasadara MMV, Jawi IM, Darmawati IAP, Wijaya IN, Krisnandika AAK, Sunyamurthi IGNA, Wirya IGNAS. Balinese purnajiwa (Kopsia arborea Blume.) extract stimulates male rats' sexual behavior and plasma testosterone level. Bali Med J. 2023;12(1):1026–1032.

Purwanto D, Bahri S, Ridhay A. Antioxidant Activity Test of Purnajiwa (Kopsia arborea Blume.) Fruit Extract with Various Solvents. Kovalen. 2017;3(1):24–32.

Apriliani RT, Wirawan IGP, Adiartayasa W. Phytochemical Analysis and Antioxidant Activity of Purnajiwa Fruit Extract (Euchresta horsfieldii (Lesch.) Benn. Int J Biosci Biotechnol. 2020;8(1):31.

Chen XD, Hu J, Li JX, Chi FS. Cytotoxic monoterpenoid indole alkaloids from the aerial part of Kopsia arborea. J Asian Nat Prod Res. 2020;22(11):1024–30.

Wong SK, Yeap JSY, Tan CH, Sim KS, Lim SH, Low YY, Kam TS. Arbolodinines A−C, biologically-active aspidofractinine-aspidofractinine, aspidofractinine-strychnan, and kopsine-strychnan bisindole alkaloids from Kopsia arborea. Tetrahedron. 2021;78:131802.

Kogure N, Suzuki Y, Wu Y, Kitajima M, Zhang R, Takayama H. Chemical conversion of strychnine into kopsiyunnanine-I, a new hexacyclic indole alkaloid from Yunnan Kopsia arborea. Tetrahedron Lett. 2012;53(48):6523–6526.

Tooriyama S, Mimori Y, Wu Y, Kogure N, Kitajima M, Takayama H. Asymmetric Total Synthesis of Pentacyclic Indole Alkaloid Andranginine and Absolute Configuration of Natural Product Isolated from Kopsia arborea. Org Lett. 2017;19(10):2722–2725.

Kitajima M, Koyama T, Wu Y, Kogure N, Zhang R, Takayama H. Kopsiyunnanines J1 and J2, New Strychnos-Type Homo-monoterpenoid indole alkaloids from Kopsia arborea. Nat Prod Commun. 2015;10(1):49–51.

Wu Y, Kitajima M, Kogure N, Zhang R, Takayama H. Two novel indole alkaloids, Kopsiyunnanines A and B, from a Yunnan Kopsia. Tetrahedron Lett. 2008;49(41):5935–5938.

Wang Q, Li Y, Li KW, Zhou CZ. Sophoridine: A review of its pharmacology, pharmacokinetics and toxicity. Phytomedicine. 2022;95:153756.

Kim JH, Kim D, Kim J, Hwang JK. Euchresta horsfieldii Benn. Activates peroxisome proliferator-activated receptor α and regulates the expression of genes involved in fatty acid metabolism in human HepG2 cells. J Ethnopharmacol. 2011;133(1):244–247.

Li HC, Yuan DP, Liu Y. Research progress on chemical constituents in plants of Euchresta J. Benn and their biological activities. Chinese Tradit Herb Drugs. 2014;45(23):3486–3493.

Gunawan IWG, Puspawati NM, Rika Kumara Dewi NW, Oka Adi Parwata M. Effect of Euchresta horsfieldii Lesch Benn leaf extract on increases enzyme activity of superoxide dismutase and glutathione peroxidase in rats with maximum physical activity. J Pharm Sci Res. 2017;9(5):578–582.

Ibrahim AM, Lawal B, Tsado NA, Yusuf AA, Jimoh AM. Phytochemical screening and GC-MS determination of bioactive constituents from methanol leaf extract of Senna occidentalis. J Coast Life Med. 2015;3(12):992–995.

Marín RM, De Oca Porto RM, Herrera Paredes ME, Alarcón AB, Balmaseda IH, Soto del Valle RM, Teresa Pas Lopes M, Guerra IR. GC/MS analysis and bioactive properties of extracts obtained from Clusia minor L. Leaves. J Mex Chem Soc. 2018;62(4):177–188.

Moore BD, Andrew RL, Külheim C, Foley WJ. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2014;201(3):733–750.

Bazargani MM, Falahati-Anbaran M, Rohloff J. Comparative Analyses of Phytochemical Variation Within and Between Congeneric Species of Willow Herb, Epilobium hirsutum and E. Parviflorum: Contribution of Environmental Factors. Front Plant Sci. 2021;11(February):1–16.

Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules. 2018;23(4):1-26.

Falahati-Anbaran M, Mohammadi Bazargani M, Rohloff J. Large Scale Geographical Mapping of Essential Oil Volatiles in Heracleum (Apiaceae): Identification of Novel Compounds and Unraveling Cryptic Variation. Chem Biodivers. 2018;15(9):e1800230.

Kumar S, Yadav A, Yadav M, Yadav JP. Effect of climate change on phytochemical diversity, total phenolic content, and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res Notes. 2017;10(1):1–12.

Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, Angos I, Carrillo W. Analysis of Environmental Conditions Effect in the Phytochemical Composition of Potato (Solanum tuberosum) Cultivars. Plants. 2020;9(7):1-13.

Benmahieddine A, Belyagoubi-Benhammou N, Belyagoubi L, El Zerey-Belaskri A, Gismondi A, Di Marco G, Canini A, Bechlaghem N, Bekkara FA, Djebli N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. Biochem Syst Ecol. 2021;95:104231.

Ismail NZ, Arsad H, Samian MR, Hamdan MR. Determination of phenolic and flavonoid contents, antioxidant activities and GC-MS analysis of Clinacanthus nutans (Acanthaceae) in different locations. Agrivita. 2017;39(3):335–344.

Behdad A, Mohsenzadeh S, Azizi M. Comparison of phytochemical compounds of two Glycyrrhiza glabra L. populations and their relationship with the ecological factors. Acta Physiol Plant. 2020;42(8):133.

He T, Wang YD, Li FR, He SY, Cui QM, Liu YP, Zhao TR, Cheng GG. Monoterpenoid indole alkaloids from Kopsia hainanensis Tsiang. Biochem Syst Ecol. 2020;93:104159.

Heravi MM, Zadsirjan V. Chapter 2 - Applications of Diels–Alder cycloaddition reaction in total synthesis of alkaloids. In: Heravi MM, Zadsirjan VBTRA of SNR in the TS of A, editors. Elsevier; 2021. 11–58 p.

Lim KH, Hiraku O, Komiyama K, Koyano T, Hayashi M, Kam TS. Biologically active indole alkaloids from Kopsia arborea. J Nat Prod. 2007;70(8):1302–1307.

Xie TZ, Zhao YL, Ma WG, Wang YF, Yu HF, Wang B, Wei X, Huang ZP, Zhu PF, Liu YP, Luo XD. Anti-inflammatory indole alkaloids from the stems of Kopsia officinalis. Chinese J Org Chem. 2020;40(3):679.

Zeng T, Wu XY, Yang SX, Lai WC, Shi SD, Zou Q, Liu Y, Li LM. Monoterpenoid Indole Alkaloids from Kopsia officinalis and the Immunosuppressive Activity of Rhazinilam. J Nat Prod. 2017;80(4):864–871.

Zheng JJ, Zhou YL, Huang ZH. The Isolation and Characterization of indole alkaloids from the fruits of Kopsia officinalis. Acta Chim Sin English Ed. 1989;7(2):168–175.

Zhou H, He HP, Kong NC, Wang YH, Liu XD, Hao XJ. Three new indole alkaloids from the leaves of Kopsia officinalis. Helv Chim Acta. 2006;89(3):515–519.

Kam TS, Sim KM, Koyano T, Komiyama K. Leishmanicidal alkaloids from Kopsia griffithii. Phytochemistry. 1999;50(1):75–79.

Kam TS, Subramaniam G, Chen W. Alkaloids from Kopsia dasyrachis. Phytochem. 1999;51(1):159–169.

Yap WS, Gan CY, Sim KS, Lim SH, Low YY, Kam TS. Aspidofractinine and Eburnane Alkaloids from a North Borneo Kopsia. Ring-Contracted, Additional Ring-Fused, and Paucidactine-Type Aspidofractinine Alkaloids from K. pauciflora. J Nat Prod. 2016;79(1):230–239.

Zhang J, Liu GT. Protective action of kopsinine F against experimental liver injury in mice. Acta Pharm. Sin. B. 1989;24(3):165–169.

Huang WY, Liu GT. Mechanism of the protective action of kopsinine against hepatotoxicity of carbon tetrachloride. Acta Pharmacol. Sin. 1989;10(5):461–464.

Mitaine AC, Mesbah K, Richard B, Petermann C, Arrazola S, Moretti C, Zeches-Hanrot M, Men-Olivier LL. Alkaloids from Aspidosperma Species from Bolivia. Planta Med. 1996;62(5):458–461.

Kutney JP, Beck JF, Ehret C, Poulton G, Sood RS, Westcott ND. Studies on indole alkaloid biosynthesis. Bioorg Chem. 1971;1(1):194–206.

Aquino PGV, de Aquino TM, Alexandre-Moreira MS, de Oliveira Santos BV, Santana AEG, de Araújo-Júnior JX. Aspidosperma Terpenoid Alkaloids — Biosynthetic Origin, Chemical Synthesis and Importance. In: Rao AV, Rao LG, editors. Phytochemicals. Rijeka: IntechOpen; 2015.

Huang J, Xu H. Matrine: Bioactivities and Structural Modifications. Curr Top Med Chem. 2016;16(28):3365–3378.

Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther. 2022;16(March):533–569.

Zhang H, Chen L, Sun X, Yang Q, Wan L, Guo C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front Pharmacol. 2020;11(May):1–18.

Kulkarni YA, Garud MS, Oza MJ, Gaikwad AB. Chapter 28 - Biomarkers of Multiple Sclerosis and Their Modulation by Natural Products. In: Watson RR, Killgore WDSBTN and L in NAD, editors. Academic Press; 2017. 275–284 p.

Wu Y, Suehiro M, Kitajima M, Matsuzaki T, Hashimoto S, Nagaoka M, Zhang R, Takayama H. Rhazinilam and quebrachamine derivatives from Yunnan Kopsia arborea. J Nat Prod. 2009;72(2):204–209.

Feng XZ, Kan C, Potier P, Kan SK, Lounasmaa M. Monomeric Indole Alkaloids from Kopsia officinalis. Planta Med. 1983;48(8):280–282.

Gan CY, Yoganathan K, Sim KS, Low YY, Lim SH, Kam TS. Corynanthean, eburnan, secoleuconoxine, and pauciflorine alkaloids from Kopsia pauciflora. Phytochem. 2014;108:234–242.

Feng T, Li Y, Cai XH, Gong X, Liu YP, Zhang RT, Zhang XY, Tan QG, Luo XD. Monoterpenoid Indole Alkaloids from Alstonia yunnanensis. J Nat Prod. 2009;72(10):1836–1841.

Davioud E, Kan C, Hamon J, Tempé J, Husson HP. Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochem. 1989;28(10):2675–2680.

Zhang J, Liu ZW, Li Y, Wei CJ, Xie J, Yuan MF, Zhang DM, Ye WC, Zhang XQ. Structurally Diverse Indole Alkaloids with Vasorelaxant Activity from Melodinus hemsleyanus. J Nat Prod. 2020;83(8):2313–2319.

Sharma P, Shirataki Y, Cordell GA. Alkaloids of Amsonia brevifolia. Phytochem. 1988;27(11):3649–3652.

Zhang H, Wang XN, Lin LP, Ding J, Yue JM. Indole Alkaloids from Three Species of the Ervatamia Genus: E. officinalis, E. divaricata, and E. divaricata Gouyahua. J Nat Prod. 20071;70(1):54–59.

Torrenegra R, Pedrozo JAP, Achenbach H, Bauereiß P. Alkaloids of Stemmadenia grandiflora. Phytochem. 1988;27(6):1843–1848.

Achenbach H, Benirschke M, Torrenegra R. Alkaloids and other compounds from seeds of Tabernaemontana cymosa. Phytochem. 1997;45(2):325–335.

Srivastava Man Mohan; Kulshreshtha, Dinesh Kumar SS. A New Alkaloid and Other Anti-Implantation Principles from Tabernaemontana heyneana. Planta Med. 2001;67(06):577–579.

Kutney JP, Perez I. Studies on Natural Products from Cuban Plants. Alkaloids from Tabernaemontana citrifolia. Helv Chim Acta. 1982;65(7):2242–2250.

Li X, Deng Y, Kang L, Chen L, Zheng Z, Huang W, Xu C, Kai G, Lin D, Tong Q, Lin Y, Ming Y. Cytotoxic active ingredients from the seeds of Voacanga africana. South African J Bot. 2021;137:311–319.

Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J, Zhou F. Tabersonine Inhibits Amyloid Fibril Formation and Cytotoxicity of Aβ(1–42). ACS Chem Neurosci. 2015;6(6):879–888.

Li Y, Zhao Y, Zhou X, Ni W, Dai Z, Yang D, Hao J, Luo L, Liu Y, Luo X, Zhao X. Cytotoxic Indole Alkaloid 3α-Acetonyltabersonine Induces Glioblastoma Apoptosis via Inhibition of DNA Damage Repair. Toxins (Basel). 2017;9(5).

Shan LY, Thing TC, Ping TS, Awang K, Hashim NM, Nafiah MA, Ahmad K. Cytotoxic, the antibacterial and antioxidant activity of triterpenoids from Kopsia singapurensis Ridl. J Chem Pharm Res. 2014;6(5):815–822.

AID F. Plant Lipid Metabolism. In: Baez RV, editor. Advances in Lipid Metabolism. Rijeka: IntechOpen; 2019

Downloads

Published

2024-05-30

How to Cite

Ariati, P. E. P., Wirawan, I. G. P., Sasadara, M. M., Jawi, I. M., Sunyamurthi, I. G. N., & Wijaya, I. N. (2024). Phytochemical Profiling of Balinese Alkaloid-Source Plant Purnajiwa (<i>Kopsia arborea<i> Blume. and <i>Euchresta horsfieldii</i> (Lesch.) Benn.). Tropical Journal of Natural Product Research (TJNPR), 8(5), 7089–7095. https://doi.org/10.26538/tjnpr/v8i5.5