Botanical Evaluation, GC-MS Analysis and Anti-Inflammatory Properties of the Leaves of <i>Lasimorpha senegalensis</i> Schott (Araceae)

Authors

  • Felix I. Nwafor Department of Plant Science and Biotechnology, University of Nigeria, Nsukka
  • Eleje Okonta Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka
  • Helen Udodeme Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka
  • Chima Ugorji Department of Science Laboratory Technology, University of Nigeria, Nsukka
  • Stella Inya-Agha Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka
  • Uchenna E. Odoh Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka

DOI:

https://doi.org/10.26538/tjnpr/v8i4.32

Keywords:

Lasimorpha senegalensis, Cotton-pellet granuloma, Edema, Carrageenan, Inflammation

Abstract

The leaf of Lasimorpha senegalensis Schott. (Araceae) is widely used as one of the traditional remedies for swellings, edema, pain, tumours and other inflammatory problems in southeastern Nigeria. However, its anti-inflammatory potential has not been scientifically established. This work evaluated the anti-inflammatory activity of its methanol leaf extract using the carrageenan-induced hind paw edema test and the cotton-pellet granuloma assay. For each model, different concentrations (200 mg/kg, 400 mg/kg and 800 mg/kg) of the extract was administered to each experimental group of Wistar rats (120 – 150 g; n=5). Ibuprofen (100 mg/kg) served as standard drug while normal saline (1 ml/kg) was used as negative control. Microscopic evaluation, quality standard and GC-MS analysis of the extract were also established following standard protocols. The extract (at all doses tested) significantly (p < 0.05, p < 0.01) decreased paw edema within the first 8 hours of treatment, to as much as 80 %, with better activity than ibuprofen. The extract also generally inhibited granuloma tissue formation (by as much as 70 %) in the rats, and in a dose-dependent manner. Microscopy revealed features of taxonomic importance such as the stomata parameters while the quality standards (ash and extractive values) were found to conform to existing monographs. Among 18 compounds identified by GC-MS, terpene-4-ol, palmitoleic acid, n-hexadecanoic acid, octadecanoic acid and 22-stigmasten-3-one are proven anti-inflammatory agents. These results justify the local use of the leaf of L. senegalensis, in the treatment of inflammatory conditions.

Author Biography

Felix I. Nwafor, Department of Plant Science and Biotechnology, University of Nigeria, Nsukka

Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka

References

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012; 80(3): 434-439.

Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflammation Res. 2000; 49(11): 619-626.

Manivannan P, Muralitharan G, Balaji NP. Prediction aided in vitro analysis of octa-decanoic acid from cyanobacterium Lyngbya sp. as a proapoptotic factor in eliciting anti-inflammatory properties. Bioinfo. 2017; 13(9): 301–306.

Nwafor FI and Inya-Agha SI. (2019). Ethnobotanical study of indigenous peoples’ medicinal plants. In: Egbuna C, Kumar S, Ifemeje JC, Kurhekar JV (Eds.). Phytochemistry, volume 2: pharmacognosy, nanomedicine, and contemporary issues. Canada: Apple Academic Press Inc; 2019. 43 – 68 p.

Kunle OF, Egharevba HO, Ahmadu PO. Standardization of herbal medicines - A review. Int J Biodivers Conserv. 2012; 4: 101-112.

Kumari R, Kotecha, M. A review on the standardization of herbal medicines. Int J Pharma Sci Res. 2016; 7: 97-106.

Gupta M, Chaudhary PH, Tawar MG, Shrivastava B. Need and scope of standardization of herbal medicines – A review. J Res Pharm Sci. 2021; 7(8): 26 – 31.

Armitage J, Phillips W. A hybrid swamp lantern. The Plantsman (New Series). 2011; 10(3): 155–157.

Ayoubi A, Al-Kurdi K, Kattah A, Trefi S. Preliminary Study and Phytochemical Screening of Arum dioscorides. Int J Pharmacogn Phytochem Res. 2017; 9(2): 165-173.

Mayo SJ, Bogner JJ, Boyce PC. The genera of Araceae. Kew, Englsnd: Royal Botanical Gardens; 1997. 245 p.

Boos J. Lasimorpha senegalensis Schott. [Online] 2003. [Cited 2019 September 24]. Available from: http://www.aroid.org/genera/lasimorpha/lasiomor.html.

Bunu SJ, Miediegha O, Chukwuemrie O, Ozor MO. Phytochemicals quantification, TLC and antimicrobial assessment of the leaves and fruit extracts of Lasimorpha senegalensis (Schott) Araceae. A preprint: 10.21203/rs.3.rs-1624513/v1

Burkill HM. The useful plants of West Tropical Africa (2nd Ed). Kew: Royal Botanic Gardens; 1985. 960 p.

Chigor CB, Nwafor FI, Ugwuja E, Obi CS. Antioxidant and hepatoprotective potentials of Lasimorpha senegalensis leaf extract on carbon tetrachloride-induced liver damage in rats. J Pharma Res Int. 2020; 32(21): 70-78.

Nwafor FI, Nwosu MO, Nwafor AZ. Taxonomic and ecological significance of foliar epidermal characters in four taxa of Mussaenda L. (Rubiaceae) in Nigeria. Annual Res Rev Biol. 2019; 32(5): 1-12.

Onyekere PF, Odoh UE, Peculiar-Onyekere CO, Nwafor FI, Ezugwu CO. Pharmacognostic and phytochemical studies of leaves of Psydrax horizontalis Schum. & Thonn (Rubiaceae). Pharmacog J. 2020; 12(3): 541-550.

Sofowora A. Medicinal plants and traditional medicine in Africa. Ibadan: Spectrum Book Ltd; 1993. 156 p.

Trease GE, Evans WC. Testbook of pharmacognosy. London: Battiere Tindal Ltd; 1989. 576 p.

Vijisaral ED, Subramanian A. Study of the phytochemical analysis and antimicrobial activity of Cyperus rotundus leaves. Int. J Curr Biotech. 2013; 1(8): 5-8.

Al-Hejjaj WK, Numan IT, Al-Sa'ad RZ, Hussain SA. Anti-inflammatory activity of telmisartan in rat models of experimentally-induced chronic inflammation: Comparative study with dexamethasone. Saudi Pharm J. 2011; 19(1): 29-34.

Vaidya M. Stomatal complexes in some species of Araceae. World J Pharma Res. 2016; 5: 1037-1047.

Nwafor FI, Orabueze CI. Role of phytochemistry in plant classification: Phytochemotaxonomy. In: Egbuna C, Ifemeje JC, Udedi SC, Kumar S (Eds.). Phytochemistry, Volume 1: Fundamentals, modern techniques and applications. Canada: Apple Academic Press; 2019. 197 – 227 p.

Brand C, Ferrante A, Prager RH, Riley TV, Carson CF, Finlay-Jones JJ, Hart PH. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflammation Res. 2001; 50(4): 213-219.

Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids. 2010; 45(10): 893–905.

Su Z, Huang H, Li J, Zhu Y, Huang R, Qiu SX. Chemical composition and cytotoxic activities of petroleum ether fruit extract of fruits of Brucea javanica (Simarubaceae). Trop J Pharma Res. 2013; 12(5): 735-742.

Shapira S, Pleban S, Kazanov D, Tirosh P, Arber N. Terpinen-4-ol: a novel and promising therapeutic agent for human gastrointestinal cancers. PLoS One. 2016; 11:e0156540.

Loughlin R, Gilmore BF, McCarron PA, Tunney MM. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett Appl Microbiol. 2008; 46(4): 428-433.

Tyagi T, Agarwal M. Antioxidant properties of phenolic compounds in methanolic extracts of Eichhornia crassipes. Res J Phytochem. 2017; 11(2): 85 – 89.

Benni JM, Jayanthi M K, Suresha R N. Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharmacol. 2011; 43: 393-397.

Meshram GG, Kumar A, Rizvi W, Tripathi CD, Khan RA. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J Trad Comp Med. 2016; 6(2): 172-175.

Jose VM, Antony TT. Recent trends in the utilization of ‘NSAIDs’ in a tertiary care hospital. Indian J Pharmacol. 2003; 35: 318–319.

Sabu MC, Kuttan R. Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. Indian J Physiol Pharmacol. 2004; 48(1): 81-88.

Greay SJ, Ireland DJ, Kissick HT, Levy A, Beilharz MW, Riley TV, Carson CF. Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother Pharmacol. 2010; 65(5): 877-888.

Wu C, Chen Y, Chen J, Shieh J, Huang C, Lin P, Chang G, Chang J, Lin C. Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evidence-Based Comp Alt Med. 2011; 2012: doi:10.1155/2012/818261.

Calcabrini A, Stringaro A, Toccacieli L, Meschini S, Marra M, Colone M, Salvatore G, Mondello F, Arancia G, Molinari A. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Investigative Dermatol. 2004; 122(2): 349-360.

Mohammed GJ, Omran AM, Hussein HM. Antibacterial and phytochemical analysis of Piper nigrum using gas chromatography-mass spectrum and fourier-transform infrared spectroscopy. Int J Pharmacog Phytochem Res. 2016; 8(6): 977-996.

Wintola OA, Afolayan AJ. Chemical constituents and biological activities of essential oils of Hydnora africana Thumb. used to treat associated infections and diseases in South Africa. Appl Sci. 2017; 7: 443.

Ahmad S, Seebacher W, Faist J, Kaiser M, Brun R, Saf R, Weis R. The antiprotozoal potencies of newly prepared 3-azabicyclo[3.2.2]nonanes. Arch Pharma Res. 2016; 39(10):1391-1403.

Hoffelner M, Petritsch M, Ahmad S. New derivatives of 3- azabicyclo[3.2.2]nonanes and their antiprotozoal activities. Monatsh Chem. 2019; 150: 1959–1972.

Mohsin N, Seebacher W, Faist J, Werner S, Johanna F, Hochegger P, Kaiser M, Mäser P, Saf R, Weis R. The antiplasmodial and antitrypanosomal activities of novel piperazine derivatives of 3-azabicyclo[3.2.2]nonanes. Monatsh Chem. 2018; 149: 99– 109.

Tsuchiya T, Tanida M, Uenoyama S, Nakayama Y. Effects of olfactory stimulation with jasmin and its component chemicals on the duration of pentobarbital-induced sleep in mice. Life Sci. 1992; 50(15): 1097-1102.

Morgan NG, Dhayal S. Unsaturated fatty acids as cytoprotective agents in the pancreatic beta-cell. Prostaglandins Leukot Essential Fatty Acids. 2010; 82(4-6): 231-236.

Nestel P, Clifton P, Noakes M. Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J Lipid Res. 2014; 35(4): 656-662.

Ravi L, Krishnan K. Cytotoxic potential of n-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol. 2017; 12 (1): 20-27.

Santos CC, Salvadori MS, Mota VG, Costa LM, de Almeida AA, de Oliveira GA, Costa JP, de Sousa DP, de Freitas RM, de Almeida RN. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. 2013; 2013: 949452. doi: 10.1155/2013/949452.

Inoue Y, Hada T, Shiraishi A, Hirose K, Hamashima H, Kobayashi S. Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob Agents Chemother. 2005; 49(5): 1770–1774.

Abubakar MN, Majinda RRT. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Med. 2016; 3(3): doi:10.3390/medicines3010003

Al-Bahadily D, Falah A, Shari H, Najm AA, Al-Salman HNK. Antimicrobial activity of the compound 2-piperidinone, N-[4-Bromo-n-butyl] extracted from pomegranate peels. Asian J Pharmaceutics. 2019; 13(1): 46-52

Ganesh M, Mohankumar M. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry. J Food Sci Technol. 2017; 54(10): 3082–3091.

Adeosun CB, Olaseinde S, Opeifa AO, Atolan O. Essential oil from the stem bark of Cordia sebestena scavenges free radicals. J Acute Med. 2013; 3(4): 138 – 141.

Choo CY, Chan KL, Sam TW, Hitotsuyanagi Y, Koichi T. The cytotoxicity and chemical constituents of the hexane fraction of Typhonium flagelliforme (Araceace). J Ethnopharmcol. 2001; 77: 129-131.

Barathikannan K, Venkatadri B, Khusro A, Al-Dhabi NA, Agastian P, Arasu MV, Choi HS, Kim YO. Chemical analysis of Punica granatum fruit peel and its in- vitro and in vivo biological properties. BMC Comp Alt Med. 2016; 16: 264.

Banakar P, Jayaraj M. GC-MS analysis of bioactive compounds from ethanolic leaf extract of Waltheria indica Linn. and their pharmacological activities. Int J Pharma Sci Res. 2018; 9(5): 2005-2010.

Dandekar R, Fegade B, Bhaskar VH. GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J Pharmacog Phytochem. 2015; 4(1): 149-154.

Kesava RB, Usha RG. GC-MS analysis of volatile components in petroleum ether extracts of Coldenia procumbens Linn. Int J Pharm Biol Sci. 2016; 7(2): 241-245.

Agnel RA, Mohan VR. GC-MS analysis of bioactive compounds present in the whole plant of Andrographis echioides (Linn.) Nees (Acanthaceae). Eur J Biomed Pharma Sci. 2014; 1(3): 443-452.

Falodun A, Okunrobo LO, Uzoamaka N. Phytochemical screening and anti-inflammatory evaluation of methanolic and aqueous extracts of Euphorbia heterophylla Linn (Euphorbiaceae). Afri J Biotechnol. 2006; 5 (6): 529-531.

Falodun A. Herbal medicine in Africa -Distribution, standardization and prospects. Res J Phytochem. 2010; 4: 154-161.

Downloads

Published

2024-05-01

How to Cite

Nwafor, F. I., Okonta, E., Udodeme, H., Ugorji, C., Inya-Agha, S., & Odoh, U. E. (2024). Botanical Evaluation, GC-MS Analysis and Anti-Inflammatory Properties of the Leaves of <i>Lasimorpha senegalensis</i> Schott (Araceae). Tropical Journal of Natural Product Research (TJNPR), 8(4), 6981–6988. https://doi.org/10.26538/tjnpr/v8i4.32