Goniothalamin Isolated from Goniothalamus andersonii Improves Hematological and Biochemical Markers in Induced leukemia BALB/c Mice
Main Article Content
Abstract
The efficacy of goniothalamin, a styryl-lactone derivative as an alternative drug for leukemia
treatment has generated interest among natural products scientists. However, the studies on
goniothalamin treatment effects on serum biochemicals in relation to haematology have been
lacking. This study evaluated the effect of goniothalamin (GTN) isolated from Goniothalamus
andersonii supplemented into induced leukemia BALB/c mice model to determine the serum
biochemicals and hematological markers changes post supplementation. The mice were
categorized into normal mice (NM), untreated leukemia (LM) and goniothalamin-treated
leukemia (GTN-LM) groups. Treated mice were supplemented with 40 mg goniothalamin per kg
b.w. from day-14 and every alternate day until day-28. The present study showed that the enlarged
spleen of leukemia mice was reduced toward normal dimension following GTN treatment.
Besides, the serum biochemicals related to kidney and liver functions including urea (8.43 ± 0.85
mmol/L), creatinine (20.33 ± 0.67 µmol/L), total bilirubin (1.78 ± 0.17 µmol/L), alanine
transaminase (ALT) (65.33 ± 23.51 U/L) and aspartate aminotransferase (AST) (245.00 ± 36.17
U/L) of the GTN-LM group were found to be significantly different than LM group. Conversely,
the insignificant difference of these biomarkers between GTN-LM and NM groups had indicated
the improvement of leukemia toxicity to normal condition. The GTN-LM peripheral blood
containing lower immature granulocytes and monocytes as well as had higher apoptotic index
(35%) as compared to LM signified that goniothalamin had induced the apoptotic cell death. Thus,
this finding highlighted the potential of goniothalamin as an alternative medicine against
leukemia.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ubhenin AE, Ikebuiro JO, Idris RI, Anura F, Erharuyi O. Exploring mechanisms of tumorigenesis and plant-based therapies: A comprehensive review of cancer pathogenesis and treatment strategies. Trop J Nat Prod Res. 2023; 7(11): 5026-5033.
Cleanclay WD, Zakari S, Adigun TO, Ayeni TO, Nnaji PC, Nnenna AD, Blessing A, Adebosoye A, Gbadebo M, Agbetuyi-Tayo P, Emetere ME, Ogunlana OO. Cancer biology and therapeutics: Navigating recent advances and charting future directions. Trop J Nat Prod Res. 2023; 7(12): 5377-5402.
Taverna S, Corrado C. Natural compounds: Molecular weapons against leukemia’s. J Leuk. 2017; 5(1). [10.4172/2329-6917.1000226]
Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. World J Hepatol. 2017; 9(26): 1092-1100.
Wu M, Li C, Zhu X. FLT3 inhibitors in acute myeloid leukemia. J Hematol Oncol. 2018; 11: 133.
Habchaoui J, Saad I, El Khomsi M, Fadli M, Bourkhiss B. Ethnobotanical study of medicinal herbs in the saïss urban commune (Region of. Fez/Morocco). Trop J Nat Prod Res. 2023; 7(11): 5034-5039.
Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F. Goniothalamus: Phytochemical and ethnobotanical review. Recent Adv Biol Med. 2016; 2: 34-47.
Shakri NM, Salleh WMNHW, Shaharudin SM. Review on Malaysian goniothalamus essential oils and their comparative study using multivariate statistical analysis. Nat Volatiles & Essent. Oils. 2021; 8(1): 1-12.
Blázquez MA, Bermejo A, Zafra‐Polo MC, Cortes D. Styryl‐lactones from goniothalamus species: A review. Phytochem Anal. 1999; 10(4): 161-170.
Sujana KA, Vadhyar RG. A new species of goniothalamus (Annonaceae) from the Western Ghats of Tamil Nadu, India. Taiwania. 2020; 65(2): 176-180.
Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM, Alitheen NB. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules. 2011; 16(4): 2944-2959.
Alabsi AM, Ali R, Ali AM, Al-Dubai SAR, Harun H, Abu Kasim NH, Alsalahi A. Apoptosis induction, cell cycle arrest and in vitro anticancer activity of gonothalamin in a cancer cell lines. Asian Pacific J Cancer Prev. 2012; 13(10): 5131-5136.
Sophonnithiprasert T, Mahabusarakam W, Nakamura Y, Watanapokasin R. Goniothalamin induces mitochondria-mediated apoptosis associated with endoplasmic reticulum stress-induced activation of JNK in HeLa cells. Oncol Lett. 2017; 13(1): 119-128.
Inayat-Hussain SH, Osman AB, Din LB, Ali AM, Snowdene RT, MacFarlanee M, Cain K. Caspases-3 and -7 are activated in goniothalamin-induced apoptosis in human Jurkat T-cells. FEBS Lett. 1999; 456(3): 379-383.
Li LK, Rola AS, Kaid FA, Ali AM, Alabsi AM. Goniothalamin induces cell cycle arrest and apoptosis in H400 human oral squamous cell carcinoma: A caspase-dependent mitochondrial-mediated pathway with downregulation of NF-κβ. Arch Oral Biol. 2016; 64: 28-38.
Rajab NF, Hamid ZA, Hassan H, Ali AM, Din LB, Inayat-Hussain SH. Evaluation of the cytotoxic and genotoxic effects of goniothalamin in leukemic cell lines. Environ .Mutagen Res. 2005; 27(3): 161-164.
Silva RS, Kido LA, Montico F, Vendramini-Costa DB, Pilli RA, Cagnon VHA. Steroidal hormone and morphological responses in the prostate anterior lobe in different cancer grades after Celecoxib and Goniothalamin treatments in TRAMP mice. Cell Biol Int. 2018; 42(8): 1006-1020.
Kaid FAKS. Anticancer activity of goniothalamin on oral cancer cells in vitro and in vivo. Doctoral dissertation. Universisty of Malaya. 2018. 116-130 p.
Braga CB, Kido LA, Lima EN, Lamas CA, Cagnon VHA, ́Ornelas C, Pilli RA. Enhancing the anticancer activity and selectivity of goniothalamin using pH-sensitive acetalated dextran (Ac-Dex) nanoparticles: A promising platform for delivery of natural compounds. ACS Biomater. Sci. Eng. 2020; 6(5): 2929-2942.
Kaid F, Alabsi AM, Alafifi N, Ali AS, Al-Koshab MA, Ramanathan A, Ali AM. Ali. Histological, biochemical, and hematological effects of goniothalamin on selective internal organs of male Sprague-Dawley rats. J Toxicol. 2019; 6493286.
Iskandar NH, Yaacob SM, Rashid ZM, Nawawi NAA, Ismail IS. Quantification and characterization of goniothalamin from Goniothalamus andersonii using HPLC. Biosci Res. 2021; 18(SI):104-114.
Yetter EM, Acosta KB, Olson MC, Blundell K. Estimating splenic volume: Sonographic measurements correlated with helical CT determination. AJR Am J Roentgenol. 2003; 181(6): 1615-1620.
Mondal H, Mondal S, Pal A. Optimum volume of water to be added to the Leishman stain while preparing a blood smear. Int J Clin Exp Physiol. 2017; 4(4): 198-201.
Ghosh SK, Bera T, Pal S. Antiproliferative, apoptotic, and antimigration property of ethyl acetate extract of calocybe indica against HeLa and Caski cell lines of cervical cancer, and its antioxidant and mycochemistry analysis. Middle East J Cancer. 2020; 11(4): 454-468.
Negara KS, Prajawati NLLC, Surya GP, Suhendro S, Arijana K, Tunas K. Protein 53 (P53) expressions and apoptotic index of amniotic membrane cells in the premature rupture of membranes. Open Access Maced J Med Sci. 2018; 6(11):1986-1992.
Fukuda S, Onishi C, Pelus ML. Trafficking of acute leukemia cells : Chemokine receptor pathways that modulate leukemia cell dissemination. In: Antica M. Acute leukemia - The scientists's perspective and challenge. InTech; 2011.
Ma S, Shi Y, Pang Y, Dong F, Cheng H, Hao, S, Xu J, Zhu X, Yuan W, Cheng T, Zheng G. Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen. J Hematol Oncol. 2014; 7: 71.
Cuesta-Mateos C, Fuentes P, Schrader A, Juárez-Sánchez R, Loscertales J, Mateu-Albero T, Vega-Piris L, Espartero-Santos M, Marcos-Jimenez A, Sánchez-López BA, Pérez-García Y, Jungherz D, Oberbeck S, Wahnschaffe L, Kreutzman A, Andersson EI, Mustjoki S, Faber E, Urzainqui A, Fresno M, Stamatakis K, Alfranca A, Terrón F, Herling M, Toribio ML, Muñoz-Calleja C. CCR7 as a novel therapeutic target in T-cell prolymphocytic leukemia. Biomark Res. 2020; 8: 54.
Osman M, Akkus Z, Jevremovic D, Nguyen PL, Roh D, Al-Kali A, Patnaik MM, Nanaa A, Rizk S, Salama ME. Classification of monocytes, promonocytes and monoblasts using deep neural network models: An area of unmet need in diagnostic hematopathology. J Clin Med. 2021; 10(11): 2264.
Sinha R, Porcheri C, d’Altri T, González J, Ruiz-Herguido C, Rabbitts T, Espinosa L, Bigas A. Development of embryonic and adult leukemia mouse models driven by MLL-ENL translocation. Exp Hematol. 2020; 85: 13-19.
Nössing C, Ryan KM. 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.’ Br J Cancer. 2023; 128: 426-431.
Sekar MD, Raj M, Manivannan P. Role of morphology in the diagnosis of acute leukemias: Systematic review. Ind J Med Paediatr Oncol. 2023; 44: 464-473.
Singh V, Khurana A, Navik U, Allawadhi P, Bharani KK, Weiskirchen R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci. 2022; 4(2): 15.
Dong F, Bai H, Wang X, Zhang S, Wang Z, Xie M, Zhang S, Wang J, Hao S, Cheng T, Ema H. Mouse acute leukemia develops independent of self-renewal and differentiation potentials in hematopoietic stem and progenitor cells. Blood Adv. 2019; 3(3): 419-431.
Friedman DR, Sibley AB, Owzar K, Chaffee KG, Slager S, Kay NE, Hanson CA, Ding W, Shanafelt TD, Weinberg JB, Wilcox RA. Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multi-institutional study. Am J Hematol. 2016; 91(7): 687-691.
Dinardo CD, Garcia-Manero G, Pierce S, Nazha A, Bueso-Ramos C, Jabbour E, Ravandi F, Cortes J, Kantarjian H. Interactions and relevance of blast percentage and treatment strategy among younger and older patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Am J Hematol. 2016; 91(2): 227-232.
George B, You D, Joy MS, Aleksunes LM. Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev. 2017; 116: 73-91.
El-Kaream SAA, Ebied SAEM, Sadek NA, Saad DM, Nadwan EA. Serum estrogen and its soluble receptor levels in Egyptian patients with acute leukemia: Case-control study. Egypt J Med Hum Genet. 2021; 22: 68.
Ruggiero A, Ferrara P, Attinà G, Rizzo D, Riccardi R. Renal toxicity and chemotherapy in children with cancer. Br J Clin Pharmacol. 2017; 83(12): 2605-2614.
Hajaj E, Sciacovelli M, Frezza C, Erez A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol Cell. 2021; 81(18): 3749-3759.
Islam T, Rahman AKMS, Hasan MK, Jahan F, Mondal MC, Ferdoushi S, Alam S, Ahsan MK, Tasnim J, Tohura S. Liver function tests in patients of acute leukemia before and after induction chemotherapy. J. Biosci. Med. 2020; 8: 110-121.
Yuan Y, Li K, Teng F, Wang W, Zhou B, Zhou X, Lin J, Ye X, Deng Y, Liu W, Luo S, Zhang P, Liu D, Zheng M, Li J, Lu Y, Zhang H. Leukemia inhibitory factor protects against liver steatosis in nonalcoholic fatty liver disease patients and obese mice. J. Biol. Chem. 2022; 298(6): 101946.
Ladines-Castro W, Barragán-Ibañez G, Luna-Pérez MA, Santoyo-Sánchez A, Collazo-Jaloma J, Mendoza-García E, Ramos-Peñafiel CO. Morphology of leukaemias. Rev Méd Hosp Gen Méx. 2016; 79(2): 107-113.
National Center for Biotechnology Information. PubChem Compound Summary for CID 6440856, Goniothalamin. [Online] 2024 [Accessed 2024 Mar. 11]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Goniothalamin.