In-vivo and Histological Studies of Matrix-based Artemether-Lumefantrine Oral Tablets Derived from Cissus populnea Gum
Main Article Content
Abstract
Malaria incidences has been a public health concern and it has increased in recent years because of resistance of the malaria parasite to available antimalarial drugs. This research explored the anti-plasmodial effect of the Cissus populnea matrixed in artemether-lumefantrine against Plasmodium berghei infected mice. The matrixed drug was evaluated for prophylactic, curative, and suppressive effect in Plasmodium berghei mice. The swiss Albino mice were grouped into 4 and were inoculated with Plasmodium berghei intraperitoneally except the naïve group. The matrixed drug significantly inhibited parasitemia in prophylactic, curative, and suppressive infections (p<0.05) (45.75%, 37.75, and 60.99%, respectively). However, a significant decrease in PCV, Hb, RBC and increased total and differential white blood cell count was observed in the mice that were treated with the matrixed tablet formulation for prophylaxis and suppression, but no significant hematological effect was observed in the groups that received the matrixed tablet for curative effect. The histopathological analysis of the matrixed drug on different organs showed no observable damage in any of the organs This study suggests that incorporation of Cissus populnea gum in artemether-lumefantrine based tablets possessed promising antimalarial potential with minimal histological and hematological effects.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
World Health Organization. World Malaria Report. [Online]. 2020 [cited 2023 December 4]. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report.
Koffi AA, Camara S, Ahoua Alou LP, Oumbouke WA, Wolie RZ, Tia IZ, Sternberg ED, Yapo FHA, Koffi FM, Assi SB, Cook J, Thomas MD, N’Guessan R. Anopheles vector distribution and malaria transmission dynamics in Gbeke region, central Cote d’Ivoire. Malar. J. 2023; 22(192). Available from: https://doi.org/10.1186/s12936-023-04623-1.
World Health Organization. Malaria in children under five. [Online] 2019 [cited 2023 December 4]. Available from: https://www.whoint/malaria/areas/high risk groups/children/en/.
Plewes K, Leopald SJ, Kingston WF, Dondorf AM. Malaria. Infect Dis Clin North Am 2019; 33(1): 39-60.
World Health Organization. World Malaria Report. [Online]. 2019 [cited 2023 December 4]. Available from: http://www.who.int/news-room/feature-stories/detail/world-malaria-report.
Coker HAB, Chukwuanim CM, Ifudu ND, Aina BA. The Malaria Scourge. Concepts in Disease Management. Niger. J. Pharm.2000; (32):19 -47.
Rout S, Mahapatra RK. Plasmodium falciparum: multi-drug resistance. Chem. Biol. Drug Des.2019; 93(5): 737-759.
Ashley EA, White NJ. The duration of Plasmodium falciparum infections. Malar. J. 2014; (13) 500.
Dondorp HM, Nostem F, Yi P, Das D, Phyo PA, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 2009; 361: 455-467. Available from: https://doi.org/10.1056/NEJMoa0808859.
Nureye D & Assefa S. Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in Ethiopia. Sci. World J. 2020; (10): 1-17. Available from: https://doi.org/10-1155/2020/1295381.
Lohitha G, Hamed K, Sai KP, Bhaun PA, Ganesh Y. Current challenges and Nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemol. Control. 2022; (17): 2405-6731 Available from: https://doi.org/10.1016/j.parepi-2022.e0024.
Zirihi GN, MambuL,Guede-Guina F, Bodo B, Grellier P. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J. Ethnopharmacol. 2005; 98 (3): 281-285.
World Health Organization. The rational use of drugs and WHO. Development Dialogue. [Online]. 1985 [cited 2024 January 5]. Available from: https://pubmed.ncbi.nlm.nih.gov.
Ahmed S, Galagan S, Scobic H, Khyang J, Prue CS, Khan WA, Ram M, Alam MS, Haq MZ, Akter J, Glass G, Norris DE, Nyunt MM, Shields T, Sullivan DJ, Sack DA. Malaria hotspots drive hypo endemic transmission in the Chittagong Hill District of Bangladesh. PLoS One 2013; 8(8). Available from: https://doi.org/10.1371/Journal.Pone.0069713.
Tabuti JRS, Obakiro SB, Nabatanzi A, Anywar G, Nambejja C, Mutyaba MR, Omara T, Waako P. Medicinal plants used for treatment of malaria by indigenous communities of Toronto District, Eastern Uganda. Trop Med Health 2023; 51(34). Available from: https://doi.org/10.1186/s41182-023-00526-8.
Shoyaib AA, Archie SR, Karamyan VP. Intraperitoneal route of drug administration: Should it be used in experimental animal studies? Pharm. Res. 2019; 37(1):12. Available from: https://doi.org/10.1007/s11095-019-2745-x.
Bashir R, Rahiman SF, Hasballah K, Chong W, Talib H, Yam M,Jabbarzare M, Tie T, Othman F, Moklas M, Abdullah W, Ahmad Z. Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran. J. Parasitol 2012; 7(4): 62-74.
Peter LT, Anatoli VK. The current global malaria situation. Malaria Biology, pathogenesis, and protection. Washington DC: ASM press; 1998. (22). Available from: https://www.researchgate.net
Tajbakhsh E, Kwenti ET, Kheyri P, Nezaratizade S, Lindsay DS, Khamesipon F. Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature. Malar. J. 2021; 20(349). Available from: https://doi.org/10:1186/s12936-021-03866-0.
Hutchinson J, Dalziel JM. Flora of West tropical Africa. (2nd ed.). Part 2. Millbert. London: Crown Agents for Oversea Government and Administration; 1958. 672-683p.
Moody JO, Ojo OO, Omotade OO, Adeyemo AA, Olumese P.E, Ogundipe OO. Anti-sickling potentials of a Nigerian herbal formula (Ajawaron HF) and the major plant component (Cissus populnea L. CPK). Phytother. Res. 2003; 17(10): 1173-1176
Akomolafe SF, Oboh G, Akindahunsi AA, Akinyemi AJ, Tade OG. Inhibitory effect of aqueous extract of stem bark of Cissus populnea on Ferrous sulphate and sodium nitroprusside-induced oxidative stress in rats’ testes in vitro. ISRN Pharmacol. 2013; 2(13). Available from: https://doi.org/10.1155/2013/130989.
Osibole EAS, Ogunlesi M, Okiei W, Asekun T, Familoni OB. Assessment of antimicrobial activity of the essential oil from the stem powder of Cissus populnea and the leaves of Sesamum radiatum, Herbal Medications for Male infertility factor. Res. J. Med. Plant 2010; 4(1): 14-20.
Ojekale A, Lawal OA, Jewo P, Oguntola JA, Abdul LO. Cissus populnea (Guill & Perr): A study of the aqueous extract as potential spermatogenic enhancers in male wistar rats. Am. J. Biomed. 2015; 3(5) 124-127.
Okwelogu CO, Clark B, de Matas M, Ifudua D, Igwilo C, Silva B, York P. Design of a fixed-dose pediatric combination of artesunate and amodiaquine hydrochloride. Int. J. Pharm. 2010a; 387:19–25.
WHO guidelines for the treatment of malaria Geneva. [Online]. 2006 [cited 2024 January 7]. Available from: https://ec.europa.eu.
Simwella NV and Waters AP. Current status of experimental models for the study of malaria. Parasitology 2022; 149(6): 729-750. Available from: https://doi.org/10.1017/s003118202/002134.
Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L, Jones D, Ogutu BR. Impact of Plasmodium falciparum Infection on hematological parameters in Children living in Western Kenya. Malar. J. 2010; 9(3). Available from: https://doi.org/10.1186/1475-2875-9-S3-S4
Erhart LM, Yingyuen K, Chuana KN, Buathong N, Laaboonnchai A, Miller RS, Meshnick SR, Gasser RA, Wongsrichanalai C. Hematologic and clinical indices of malaria in a Semi-immune population of Western Thailland. Am. J. Trop. Med. 2004; (70): 8-14.
Warinmwe G M, Murungi LM, Kamuju G, Nyangweso GM, Warubua J, Naranbhai M, Marsh K. The ratio of monocytes to lymphocytes in peripheral blood correlates with increased susceptibility to clinical malaria in Kenya children. Michcron J. 2013; 4(8):1371-8
Calballero MJ, Izquierdo MS, Kjorsvik E, Fernandez AJ, Rosenlund G. Histological alteration in liver sea bream sparusaurata L., caused by short or long-term feeding of vegetable oils: J. Fish Dis. 2004; (27) :531-541.
Knight DJ, Peters W. The antimalarial action of N-benzyloxydihydrotriazine I. The actions of Clociguanil (BRL 50216) against rodent malaria and studies on its mode of action. Ann. Trop. Med. Parasitol. 1980; (74) :393-404.
Ryley JF and Peters W. The antimalarial activity of some quinolone esters. Ann. Trop. Med. Parasitol. 1970; (84) :209-222.
Bancroft JD and Layton C. The Hematoxylin and Eosin. In: Suvarna, SK., Layton, C and Bancroft J.D. Theory & Practice of Histological Techniques. (7th Ed.). Philadelphia: Churchill Livingstone of EL Sevier; 2013. 172-214 p. Available from: https://doi.org/10.1016/B978-0-7020-4226-3.00010-X.
Arora G, Chuang Y, Sinnis P, Dimopoulos G, Fikrig E. Malaria: Influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol. 2023; 44 (4): 256-265. Available from: https://doi.org/10.1016/j.it.2023.02.005.
Su X, Zhang C, Joy DA. Host-malaria parasite interaction and impacts on mutual evolution. Front. cell. infect. 2020;10. Available from: https://doi.org/10/103389/fcimb.2020.587933.
Lakkavaram A, Lundle RJ, Do H, Ward AC, de Koning-Ward TF. Acute Plasmodium berghei mouse infection elicits perturbed erythropoiesis with features that overlap with anaemia of chronic disease. Front. Microbiol. 2020; 11: 702. Available from: https://doi.org/10.3389/fmicb.2020.00702.
Patel A, Perrin AJ, Flynn HR, Bisson C, Withers-Martinez C, Treeck M, Flueck C, Nicastro G, Martin SR, Ramos A, Gilberger TW, Snijders AP, Blackman MJ, Baker DA. Cyclic AMP Signalling controls key components of malaria parasite host cell invasion machinery. PLoS Biol 2019; 17(5). Available from: https://doi.org/10.1371/Journal.pbio.3000264.
Krettli A, Adebayo J, Krettli L. Testing of natural products and synthetic molecules aiming at new antimalarials. Curr. Drug Targets 2009; 10(3): 261-270.
Perkins DJ, Were T, Davenport GG, Kempaiah P, Hittner JB, Ongecha JM. Severe malarial anaemia: Inmate immunity and pathogenesis. Int. J. Biol. Sci. 2011; 7(9): 1427-42. Available from: https://doi.org/ 10.7150/ijbs.7.142.