Exploring the Disinfectant Potential of Plant Extracts against Bacterial Strains


  • Samira Jaouhar Higher Institut of Nursing and Health Professions of Fez-Meknes. Regional Directorate of Health Fes-Meknes, El Ghassani Hospital, Dhar El Mehraz, 30000 Fes, Morocco.
  • Ikrame Zeouk Laboratory of Pharmacology-Toxicology, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, PB 2202, Fez, Morocco.
  • Samiha Dahou Sidi Mohamed Ben Abdellah University, Faculty of Medicine and Pharmacy, Laboratory of human pathology, biomedicine, and environment, Fez, Morocco
  • Khadija Bekhti Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Microbial Biotechnology & Bioactive Molecules, PB 2202, Fez, Morocco.




Phenolic compounds, Peganum harmala, Dilution-neutralization methods, Disinfectant, Antimicrobial activity


The massive and excessive use of disinfectants has harmful effects on ecosystems and human health. This study aimed to evaluate the potential effect of the methanol extracts of Peganum harmala, Pistacia lentiscus, Rubia tinctorum, and Nardostachys grandiflora. Antimicrobial activity was tested against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853, the disinfectant potential was determined using the dilution-neutralization method (NF EN1040/T72-152, 2006). A phytochemical assay was carried out on plant extracts employing the Folin-Ciocalteu method for the quantification of polyphenols,
and the aluminum chloride method (AlCl3) was used to determine the flavonoid content. The results revealed the antimicrobial activity of Peganum harmala against all the strains, with a minimum inhibitory concentration (MIC) between 1 and 4 mg/mL, followed by Pistacia lentiscus and Rubia tinctorum, with MICs between 2 and 16 and 4 and 16 mg/ml, respectively. However, only Peganum harmala showed significant disinfectant activity, with microbial reduction ranging from 4.66 log10 CFU/mL to 3.19 log10 CFU/mL after 5 minutes of contact. The phytochemical assay revealed a flavonoid content of 79 ± 2.5 μg eq Que/mg E and a phenol content of 72 ± 0.88 μg eq AG/mg E in Peganum harmala. Peganum harmala has significant potential as a natural disinfectant. Further research should focus on the development of eco-friendly and cost-effective disinfection methods. This would help mitigate the negative impacts of chemical disinfectants on ecosystems and human health.

Author Biography

Samira Jaouhar, Higher Institut of Nursing and Health Professions of Fez-Meknes. Regional Directorate of Health Fes-Meknes, El Ghassani Hospital, Dhar El Mehraz, 30000 Fes, Morocco.

Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Laboratory of Microbial Biotechnology & Bioactive Molecules, PB 2202, Fez,

Hassan First University of Settat, Higher Institute of Health Sciences; Laboratory of Health Sciences and Technologies; Casablanca Road km 3,5 PB 555 Settat;
26000, Morocco.


Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environ Res. 2021;

: 110897. Doi: 10.1016/j.envres.2021.110897.

Assadian O, Harbarth S, Vos M, Knobloch J.K, Asensio A, Widmer A.F. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: a narrative review. J Hosp Infect. 2021; 113(2021): 104-114. Doi 10.1016/j.jhin.2021.03.010.

Ergonul O, Tokca G, Keske S,Donmez E, Madran B, Kömür A, Gönen M, Can F. (2022). Elimination of healthcare-associated Acinetobacter baumannii infection in a highly endemic region. Int J Infect Dis. 2022; 114: 11-14. doi: 10.1016/j.ijid.2021.10.011.

Duszynska W, Rosenthal VD, Szczesny A, Zajaczkowska K, and Fulek M. Device associatedhealth care-associated infections monitoring,

prevention, and cost assessment at intensive care unit of University Hospital in Poland (2015-2017). BMC Infect Dis 2020; 20(1): 1-10

Khoshnood S, Heidary M, Asadi A, Soleimani S, Motahar M, Savari M, Saki M, Abdi M. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphyloccus aureus. Biomed Phrmacoter.2019; 109:1809-1818. Doi: 10.1016/j.biopha.2018.10.131.

Grousd, J.A, Rich H.E, Alcorn J.F. Host-pathogen interactions in Gram-positive bacterial pneumonia. Clin. Microbiol. Rev.2019; 32(3): e00107-18. Doi: 10.1128/CMR.00107-18.

Liu J-Y and Dickter J. Nosocomial Infections: A History of Hospital-Acquired Infections. Gastroenterol Clin North Am. 2020; 30(4): 637-652.

Doi: 10.1016/j.giec.2020.06.001.

Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1) :547-569. Doi: 10.1080/21505594.2021.

Jiang Z-Q, Wang S D, Feng DD, Zhang B, Mao S, Wu J. Epidemiological risk factors for nosocomial bloodstream infections: A four-year retrospective study in China. 2019. J Crit Care;52:92-96. Doi: 10.1016/j.jcrc.2019.04.019.

Ludden C, Coll F, Gouliouris T, Restif O, Blane BSc B, Blackwell GA, Kumar N, Naydenova P, Crawley C, Brown NM, Parkhill J, Peacock SJ. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe. 2021 ;2(9): e472-e480. Doi: 10.1016/S2666-5247(21)00117-8.

Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins

(Basel). 2020; 12(2):67. Doi: 10.3390/toxins12020067.

Sivakumar M, Abass G, Vivekanandhan R, Anukampa, Singh DK, Bhilegaonkar K, Kumar S, Grace MR, Dubal Z. Extended-spectrum betalactamase (ESBL) producing and multidrugresistant Escherichia coli in street foods: a public health concern. J Food Sci Technol.

;58(4):1247-1261. Doi: 10.1007/s13197-020-04634-9.

Salmanov A, Vozianov S, Kryzhevsky V, Litus O, Drozdova A, Vlasenko I. Prevalence of healthcareassociated infections and antimicrobial resistance in acute care hospitals in Kyiv, Ukraine. J Hosp Infect. 2019; 102 (4): 431-437.

Sharma D, Misba L, & Khan A.U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect

Control.2019; 8(76). Doi. 10.1186/s13756-019-0533-3.

Bragg R, Jansen A, Coetzee M, Westhuizen W, Boucher C. Bacterial resistance to Quaternary Ammonium Compounds (QAC) disinfectants. Adv

Exp Med Biol. 2014; 808:1-13. Doi: 10.1007/978-81-322-1774-9_1.

Wassenaar T, Ussery D, Nielsen L, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp). 2015; 5(1): 44–61. Doi: 10.1556/EUJMI-D-14-00038.

Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect.2015; 6: 22-29. Doi: 10.1016/j.nmni.2015.02.007

MacGibeny M A, and Margaret W. Preventing adverse cutaneous reactions from amplifed hygiene practices during the COVID-19 pandemic: how dermatologists can help through anticipatory guidance. Arch Dermatol Res. 2021; 313(6) :501-503. Doi: 10.1007/s00403-020-02086-x.

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104: 246–251. Doi:10.1016/j.jhin.2020.01.022.

Chen Z, Guo J, Jiang Y, Shao Y. High concentration and high doses of disinfectants and antibiotics used during the COVID-19 pandemic threaten human health. Environ Sci Eur. 2021; 33 (1): 11. Doi:10.1186/s12302-021-00456-4.

Dhama K, Patel S K, Kumar R, Masand R, Rana J, Yatoo M.I.T, Tiwari R, Sharun K, Mohapatra RK, Natesan S, Dhawan M, Ahmad T, Emran TB, Malik YS, Harapan H. The role of disinfectants and sanitizers during COVID-19 pandemic: advantages and deleterious effects on humans and the

environment. Environ Sci Pollut Res Int. 2021; 28(26) :34211-34228. Doi:10.1007/s11356-021-14429-w.

Silva L.N, Zimmer K.R, Macedo A.J, Trentin D.S. Plant Natural Products Targeting Bacterial Virulence Factors. Chem. Rev. 2016; 116: 9162–

Doi.: 10.1021/acs.chemrev.6b00184.

Riau A.K, Aung T.T, Setiawan M, Yang L, Yam G.H.F, Beuerman R.W, Venkatraman SS, Mehta JS. Surface Immobilization of Nano-Silver on

Polymeric Medical Devices to Prevent Bacterial Biofilm Formation. Pathogens. 2019; 8(3):93. Doi:10.3390/pathogens8030093.

Newman DJ and Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2014. J Nat Prod. 2016; 79(3): 629–661.


Badduri N, Gupta NV, Gowda DV, Manohar M. Formulation and development of topical anti-acne formulation of spirulina extract. Int. J. Appl. Pharm. 2018; 10 (6): 229-33. Doi:10.22159/ijap.2018v10i6.26334.

Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics:

Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019 ; 9(11) :258. Doi:10.3390/metabo9110258.

Bhatia P, Sharma A, George A.J, Anvitha D, Kumar P, Dwivedi V.P, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon. 2021; 7(2): e06310. Doi: 10.1016/j.heliyon.2021.

Mulani MS, Kamble EE, Kumkar SN, Tawre MS, and Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial

Resistance: A Review. Front. Microbiol. 2019; 10: 539–563. Doi: 10.3389/fmicb.2019.00539.

Harich M, Maherani B, Salmieri S, and Lacroix M. Antibacterial activity of cranberry juice concentrate on freshness and sensory quality of ready to eat (RTE) foods. Food Control. 2017; 75: 134-144. Doi:10.1016/j.foodcont.2016.11.038.

Zeouk I, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Bethencourt-Estrella C. J, Bekhti K, LorenzoMorales J, Jiménez IA, Piñero JE. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed. Pharmacother. 2020; 130: 110518. Doi:10.1016/j.biopha.2020.110518.

Fongang Fotsing Y- S, Bankeu Kezetas J-J, GaberB, Iftikhar A and Lenta N- B. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. 2022; Chapiter in Natural Medicinal Plants. http://dx.doi.org/10.5772/intechopen.98602.

Yeo V.L, Chia Y.Y, Lee C.H, Sheng Sow H, Sum Yap W. Effectivensess of Maceration Periods with Different Extraction Solvent on in-vitro

Antimicrobial Activity from Fruit of Momordica charantia L. J App Pharm Sci. 2014; 4(10): 16-23. https://japsonline.com/admin/php/uploads/1153_pdf.pdf.

Zeouk I, Balouiri M, Bekhti K. Antistaphylococcal Activity and Phytochemical Analysis of Crude Extracts of Five Medicinal Plants Used in the Center of Morocco against Dermatitis. Int J Microbiol. 2019: 1803102. Doi: 10.1155/2019/1803102.

Magill S. S, O’Leary E, Janelle S. J, Thompson D L, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldavs Z, Gross

C, Bamberg W, Sievers M, Concannon C, Buhr N, Warnke L, Maloney M, Ocampo V, Brooks J, Oyewumi T, Sharmin S, Richards K, Rainbow J,

Samper M, Hancock EB, Leaptrot D, Scalise E, Badrun F, Phelps R, Edwards JR. Changes in Prevalence of Health Care–Associated Infections in

U.S. Hospitals. N Engl J Med. 2018; 379(18):1732–1744. Doi:10.1056/NEJMoa1801550.

Saleem Z, Godman B, Azmi Hassali M, Khurshid Hashmi F, Azhar F, Rehman I. Point prevalence surveys of health-care-associated infections: a systematic review. Pathog Glob Health. 2019;113(4): 191-205. Doi:10.1080/20477724.2019.1632070.

Balouiri M, Sadiki M, Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2): 71-79. Doi:


St-Pierre A, Blondeau D, Bourdeau N, Bley J, Desgagné-Penix I. Chemical composition of black spruce (Picea mariana) bark extracts and their

potential as a natural disinfectant. Ind Biotechnol. 2019; 15 (3): 219-231. Doi:10.1089/ind.2019.0007.

Springthorpe VS and Sattar SA. Carrier tests to assess microbicidal activities of chemical disinfectants for use on medical devices and environmental surfaces. J AOAC Int. 2005; 88(1):182–201. Doi:10.1093/jaoac/88.1.182.

Espigares E, Bueno A, Fernández-Crehuet M, Espigares M. Efficacy of some neutralizers in suspension tests determining the activity of

disinfectants. J Hosp Infec. 2003; 55(2) :137-140. Doi:10.1016/S0195-6701(03)00238-X.

Ainsworth K.M and Gillespie E.A. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007; 2(4): 875-7. Doi:10.1038/nprot.2007.102.

Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, Vasseur J, Cazin M, Cazin JC, Pinkas M. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittelforschung. 1996; 46(11): 1086-9.

Arshad N, Zitterl‐Eglseer K, Hasnain S, and Hess M. Effect of Peganum harmala or its β‐carboline alkaloids on certain antibiotic-resistant strains of bacteria and protozoa from poultry. Phytother Res. 2008; 22 (11): 1533-1538. Doi:10.1002/ptr.2528.

Senhaji S, Lamchouri F, Toufik H. PhytochemicalContent, Antibacterial and Antioxidant Potential of Endemic Plant Anabasis aretioïdes Coss. and Moq. (Chenopodiaceae)", Biomed Res Int. 2020: 16. Doi.:10.1155/2020/6152932.

Ghafari R, Mouslemanie N, Nayal R. Antibacterial activity of Rubia tinctorum linn. Root extracts. Int J Pharm Sci Res. 2018; 9(9): 3914-3918. Doi:


Djebari S, Wrona M, Boudria A, Salafranca J, NerinC, Bedjaoui K, Madani K. Study of bioactive volatile compounds from different parts of Pistacia lentiscus L. extracts and their antioxidant and antibacterial activities for new active packaging application. Food Control. 2021; 120: 107514. Doi:10.1016/j.foodcont.2020.107514.

Edziri H, Mastouri M, Matieu M, Zine M, Gutman L, and Aouni M. Biological activities of Peganum harmala leaves. Afr J Biotechnol. 2010; 9 (48):8199–8205. Doi:10.5897/AJB10.564.

Senhaji F, Lamchouri F, Boulfia M, Lachkar N, Bouabid K, and Toufik H. Mineral composition,content of phenolic compounds and in vitro

antioxidant and antibacterial activities of aqueous and organic extracts of the seeds of Peganum harmala L. S Afr J Bot. 2022; 147: 697-712. Doi:


Benhammou N, Bekkara F. A, and Panovska T. K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr J Pharm Pharmacol. 2008; 2(2): 022-028. Doi:10.5897/AJPP.9000056.

Abachi S, Khademi F, Fatemi H, and Malekzadeh F. Study of antimicrobial activity of selected Iranian plant extracts on vancomycin-resistant

Staphylococcus epidermidis. IOSR J Dent Med Sci. 2013; 4 (1): 59–63. Doi:10.9790/0853-041596.

Essaidi I, Snoussi A, Ben Haj Koubaier H, Casabianca H, Bouzouita N. Effect of acid hydrolysis on alizarin content, antioxidant and

antimicrobial activities of Rubia tinctorum extracts. Pigment Resin Technol. 2017; 46(5): 379–384. Doi:10.1108/PRT-11-2015-0116.

Khlifi D, Sghaier R. M, Amouri S, Laouini D, Hamdi M, Bouajila J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem Toxicol. 2013; 55: 202-208. Doi: 10.1016/j.fct.2013.01.004.

Ait Abderrahim L, Taïbi K, and Ait Abderrahim CH. Assessment of the Antimicrobial and Antioxidant Activities of Ziziphus lotus and Peganum harmala. Iran J Sci Technol Trans A Sci .2019 ; 43 (2) : 409-414. Doi :10.1007/s40995-017-0411-x.

Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999; 12: 564-582. Doi:10.1128/CMR.12.4.564.

Akabli T, Lamchouri F, Senhaji S, Toufik H. Molecular docking, ADME/Tox prediction, and in vitro study of the cell growth inhibitory activity of

five β-carboline alkaloids. Struct Chem. 2019; 30: 1495–1504. Doi: 10.1007/s11224-019-01308-x.

Belhachat D, Aid F, Mekimene L, and Belhachat M. Phytochemical screening and in vitro antioxidant activity of Pistacia lentiscus berries ethanolic extract growing in Algeria. Med J Nutrition Metab. 2017; 10 (3): 273-285. Doi: 10.3233/MNM-17169.

Hemma R, Belhadj S, Ouahchia C, and Saidi F. Antioxidant activity of Pistacia lentiscus methanolic extracts. Revue agrobiologia. 2018 ; 8(1) :845-852. http://agrobiologia.net/online/wpcontent/uploads/2018/06/845-852HEMMA_et_al_2-col.pdf/

Kákoniová D, Vaverková Š, Lišková D, Urgeová E, and Juráková Z. The possibility to enhance flavonoids production in Rubia tinctorum L. callus

cultures. Nova Biotechnol. 2009; 9(2): 191–197. Doi:10.36547/nbc.1277.

Cushnie TT and Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011; 38 (2):

-107. Doi: 10.1016/j.ijantimicag.2011.02.014.

Shuping L, Xuemei C, Changhong W. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J Ethnopharmacol 2017; 203: 127-162. Doi: 10.1016/j.jep.2017.03.049.

Nadia M, Rima A, Rima R, Khouloud A, Abdelouahab B. Evaluation of the Subacute Toxic Effects of the Alkaloids of the Seeds of Peganum

harmala L in the Liver, Kidney and Ovary of Female Rats. Trop J Nat Prod Res. 2022 ; 6(10):1632-1637. Doi :10.26538/tjnpr/v6i10.12.

Eltawaty SIA, Suliman MB, El-HddadS. Chemical Composition, and Antibacterial and Antifungal Activities of Crude Extracts from

Pistacia lentiscus L. Fruit. Trop J Nat Prod Res. 2023 ; 7(9):4049-4054. Doi :10.26538/tjnpr/v7i9.30

Tagousop C. N, Ekom S. E, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from

Graptophyllum grandulosum and their mechanism of antibacterial action. BMC Complement Altern Med. 2018; 18(1): 1-10. Doi:10.1186/s12906-018-2321-7.

Lundén J, Autio T, Markkula A, Hellström S, Korkeala H. Adaptive and cross-adaptive responses of persistent and non-persistent Listeria

monocytogenes strains to disinfectants. Int J Food Microbiol. 2003; 82(3): 265-272. Doi:10.1016/S0168-1605(02)00312-4.

Derksen G. C, Niederländer H. A, van Beek T. A. Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection. J Chromatogr A. 2002; 978 (1-2): 119-127. Doi:10.1016/S0021-9673(02)01412-7.

Hamed M. M, Refahy L. A, Abdel-Aziz M. S. Evaluation of antimicrobial activity of some compounds isolated from Rhamnus cathartica L.

Orient J Chem. 2015; 31(2): 1133-1140. Doi:10.13005/ojc/310266. 66. Malmir M, Serrano R, Silva O. Anthraquinones as potential antimicrobial agents-A review. In: A. Méndez-Vilas, editor. Antimicrobial research:Novel bioknowledge and educational programs. Badajoz: Formatex Research Center 2017: 55-61. https://www.researchgate.net/publication/319620317_Anthraquinones_as_potential_antimicrobial_agents-A_review.

Sanhueza L, Melo R, Montero R, Maisey K, Mendoza L, Wilkens M. Synergistic interactions between phenolic compounds identified in grape

pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PloS one. 2017; 12(2): e0172273. Doi


Gaysinsky S, Davidson PM, Bruce BD, Weiss J. Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH. J Food Prot. 2005; 68 (7):1359-1366. Doi:10.4315/0362-028X-68.7.1359.

Bolfoni MR, Ferla MDS, Sposito ODS, Giardino L, Jacinto RDC, Pappen FG. Effect of a surfactant on the antimicrobial activity of sodium hypochlorite solutions. Braz Dent J. 2014; 25: 416-419. Doi:10.1590/0103-6440201300049.




How to Cite

Jaouhar, S., Zeouk, I., Dahou, S., & Bekhti, K. (2024). Exploring the Disinfectant Potential of Plant Extracts against Bacterial Strains. Tropical Journal of Natural Product Research (TJNPR), 8(3), 6508–6515. https://doi.org/10.26538/tjnpr/v8i3.6

Most read articles by the same author(s)