Effect of Coconut Water Storage Time and Inoculum Size of Lentilactobacillus parafarraginis on Dried Bacterial Cellulose Properties

Main Article Content

Indah Y. Ningsih
Mochammad A. Hidayat
Bambang Kuswandi
Tristiana Erawati

Abstract

Bacterial cellulose is a polysaccharide that possesses a chemical structure identical to cellulose derived from plants. Due to its high purity and distinct physicochemical properties, bacterial cellulose is extensively used in several industries, e.g., biomedical, food, and tissue engineering. The study aimed to evaluate the impact of the storage time of coconut water and the inoculum size of Lentilactobacillus parafarraginis on the properties of dried bacterial cellulose. In this study, coconut water was stored for 1, 2, and 3 days. The inoculum size used to produce bacterial cellulose was 4, 6, 8, and 10%. After fermentation for 9 days, bacterial cellulose was harvested and dried in an oven. The bacterial cellulose was evaluated for its organoleptic, weight, thickness, pH, swelling degree, moisture content, mechanical strength, and water vapour transmission (WVTR) properties. The FTIR spectrum and SEM image analysis were performed on the bacterial cellulose with optimum characteristics. The results showed that bacterial cellulose with coconut water stored for 2 days and inoculum size of 10% (BC210) exhibited optimum characteristics, indicating potential development as a new candidate biomaterial for broad applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ningsih, I. Y., Hidayat, M. A., Kuswandi, B., & Erawati, T. (2024). Effect of Coconut Water Storage Time and Inoculum Size of Lentilactobacillus parafarraginis on Dried Bacterial Cellulose Properties. Tropical Journal of Natural Product Research (TJNPR), 8(2), 6191-6299. https://doi.org/10.26538/tjnpr/v8i2.29
Section
Articles
Author Biographies

Indah Y. Ningsih, Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia

Biomaterials and Bioproducts Group, Faculty of Pharmacy, University of Jember, Jember 68121, East Java, Indonesia

Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember 68121, East Java, Indonesia

Mochammad A. Hidayat, Biomaterials and Bioproducts Group, Faculty of Pharmacy, University of Jember, Jember 68121, East Java, Indonesia

Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember 68121, East Java, Indonesia

Tristiana Erawati, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia

Cosmetic Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia.

How to Cite

Ningsih, I. Y., Hidayat, M. A., Kuswandi, B., & Erawati, T. (2024). Effect of Coconut Water Storage Time and Inoculum Size of Lentilactobacillus parafarraginis on Dried Bacterial Cellulose Properties. Tropical Journal of Natural Product Research (TJNPR), 8(2), 6191-6299. https://doi.org/10.26538/tjnpr/v8i2.29

References

Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol. 2019; 133:148-155. doi:10.1016/j.ijbiomac.2019.04.095

Illa MP, Sharma CS, Khandelwal M. Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J Mater Sci. 2019; 54(18):12024-12035. doi:10.1007/s10853-019-03737-9

Sederavičiūtė F, Bekampienė P, Domskienė J. Effect of pre-treatment procedure on properties of Kombucha fermented bacterial cellulose membrane. Polym Test. 2019; 78:105941. doi:10.1016/j.polymertesting.2019.105941

Hu W, Chen S, Yang J, Li Z, Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014; 101:1043-1060. doi:10.1016/j.carbpol.2013.09.102

Hodel KVS, Fonseca LM dos S, Santos IM da SS, Cerqueira JC, dos Santos-Junior RE, Nunes SB, Barbosa JDV, Machado BAS. Evaluation of different methods for cultivating Gluconacetobacter hansenii for bacterial cellulose and montmorillonite biocomposite production: Wound-dressing applications. Polymers. 2020; 12(2):267. doi:10.3390/polym12020267

Revin VV, Liyas’kina EV, Sapunova NB, Bogatyreva AO. Isolation and characterization of the strains producing bacterial cellulose. Microbiology. 2020; 89(1):86-95. doi:10.1134/S0026261720010130

Yanti NA, Ahmad SW, Muhiddin NH. Evaluation of inoculum size and fermentation period for bacterial cellulose production from sago liquid waste. J Phys Conf Ser. 2018; 1116(2018):1-7. doi:10.1088/1742-6596/1116/5/052076

Kim JA, Jung WS, Chun SC, Yu CY, Ma KH, Gwag JG, Chung IM. A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Eur Food Res Technol. 2006; 224(2):259-270. doi:10.1007/s00217-006-0377-y

Devanthi PVP, Pratama F, Kho K, Taherzadeh MJ, Aslanzadeh S. The effect of Dekkera bruxellensis concentration and inoculation time on biochemical changes and cellulose biosynthesis by Komagataeibacter intermedius. J Fungi. 2022; 8(1206):1-13. doi:10.3390/jof8111206

Keshk S, Sameshima K. Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol. 2005; 4(6):478-482.

Buldum G, Bismarck A, Mantalaris A. Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosyst Eng. 2018; 41(2):265-279. doi:10.1007/s00449-017-1864-1

Velasquez MT, Bhathena SJ. Role of dietary soy protein in obesity. Int J Med Sci. 2007; 4:72-82. doi:10.7150/ijms.4.72

Kongruang S. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol. 2008; 148(1-3):245-256. doi:10.1007/s12010-007-8119-6

Wu JM, Liu RH. Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J Biosci Bioeng. 2013; 115(3):284-290. doi:10.1016/j.jbiosc.2012.09.014

Cao Y, Lu S, Yang Y. Production of bacterial cellulose from byproduct of citrus juice processing (citrus pulp) by Gluconacetobacter hansenii. Cellulose. 2018; 25(12):6977-6988. doi:10.1007/s10570-018-2056-0

Amorima J, Costab A, Galdino Jr. C, Vinhasa G, Santos E, Sarubb L. Bacterial cellulose production using fruit residues as substract to industrial application. Chem Eng Trans. 2019; 74:1165-1170.

Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut. Food Chem. 2014; 142:121-128. doi:10.1016/j.foodchem.2013.07.040

Rani MU, Udayasankar K, Appaiah KAA. Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci. 2011; 120(5):2835-2841. doi:10.1002/app.33307

Kamarudin S, Sahaid K, Sobri T, Mohtar W, Radiah A, Norhaliza H. Different media formulation on biocellulose production by Acetobacter xylinum (0416). Pertanika J Sci Technol. 2013; 21(1):29-36.

Suryani S, Purnawati Y, Gemaeka Putri S, Rahmawati R, Akbar Y, Yusra Y. Novel probiotic isolation of coconut water’s helpful lactic acid bacteria cure Covid-19 patients. ARRUS J Eng Tech. 2022; 2(1):1-11. doi:10.35877/jetech724

Pramana WA, Septinova D, Riyanti R, Husni A. Pengaruh air kelapa hasil fermentasi terhadap kualitas fisik daging broiler. Jurnal Riset dan Inovasi Peternakan. 2018; 2(2):7-13.

Santosa B, Wignyanto W, Hidayat N, Sucipto S. The quality of nata de coco from sawarna and mapanget coconut varieties to the time of storing coconut water. Food Res. 2020; 4(4):957-963. doi:10.26656/fr.2017.4(4).372

Brown AJ. The chemical action of pure cultivations of Bacterium aceti. J Chem Soc T. 1886; 49(0):172-187. doi:10.1039/CT8864900172

Skočaj M. Bacterial nanocellulose in papermaking. Cellulose. 2019; 26(11):6477-6488. doi:10.1007/s10570-019-02566-y

Allen-McFarlane R, Allen AD, Bansal G, Eribo B. Isolation and characterization of L. parafarraginis (KU495926) inhibiting multidrug-resistant and extended spectrum β-lactamase gram-negative bacteria. J Microbiol Biotechnol Food Sci. 2019; 8(4):1041-1053. doi:10.15414/jmbfs.2019.8.4.1041-1053

Adetunji V, Adegoke G. Bacteriocin and cellulose production by lactic acid bacteria isolated from West African soft cheese. Afr J Biotechnol. 2007; 6(22):2616-2619. doi:10.5897/AJB2007.000-2418

Sumardee JNS, Mohd-Hairul AR, Mortan SH. Effect of inoculum size and glucose concentration for bacterial cellulose production by Lactobacillus acidophilus. In: IOP Conf Ser: Mater Sci Eng. Vol 991. IOP Publishing Ltd; 2020:1-5. doi:10.1088/1757-899X/991/1/012054

Elbanna K, El Hadad S, Assaeedi A, Aldahlawi A, Khider M, Alhebshi A. In vitro and in vivo evidences for innate immune stimulators lactic acid bacterial starters isolated from fermented camel dairy products. Sci Rep. 2018; 8(12553):1-15. doi:10.1038/s41598-018-31006-3

Seto A, Saito Y, Matsushige M, Kobayashi H, Sasaki Y, Tonouchi N, Tsuchida T, Yoshinaga F, Ueda K, Beppu T. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl Microbiol Biotechnol. 2006; 73(4):915-921. doi:10.1007/s00253-006-0515-2

Khan H, Kadam A, Dutt D. Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr Polym. 2020; 229:115513. doi:10.1016/j.carbpol.2019.115513

Gunduz G, Erbas Kiziltas E, Kiziltas A, Gencer A, Aydemir D, Asik N. Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers. 2019; 16(4):567-575. doi:10.1080/15440478.2018.1428847

Kim KM, Kim J, Yang KW. Effect of acetic acid concentration and mixed culture of lactic acid bacteria on producing bacterial cellulose using Gluconacetobacter sp. gel_SEA623-2. Korean J Microbiol. 2014; 50(3):227-232. doi:10.7845/kjm.2014.4062

Badan Standarisasi Nasional. Standar Nasional Indonesia SNI 4268-2020 Air Kelapa Olahan. Published online 2020:1-20.

Thongwai N, Futui W, Ladpala N, Sirichai B, Weechan A, Kanklai J, Rungsirivanich P. Characterization of bacterial cellulose produced by Komagataeibacter maltaceti P285 isolated from contaminated honey wine. Microorganisms. 2022; 10(3):1-18. doi:10.3390/microorganisms10030528

Indrianingsih AW, Rosyida VT, Apriyana W, Hayati SN, Darsih C, Nisa K, Ratih D. Antioxidant and antibacterial properties of bacterial cellulose-Indonesian plant extract composites for mask sheet. J Appl Pharm Sci. 2020; 10(7):37-42. doi:10.7324/JAPS.2020.10705

Indrianingsih AW, Rosyida VT, Jatmiko TH, Prasetya DJ, Poeloengasih CD, Apriyana W, Nisa K, Nurhayati S, Hernawan, Darsih C, Pratiwi D, Suwanto A, Ratih D. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water. In: IOP Conf Ser: Earth Environ Sci. Vol 101. Institute of Physics Publishing; 2017. doi:10.1088/1755-1315/101/1/012010

Kuswandi B, Jayus, Oktaviana R, Abdullah A, Heng LY. A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packag Technol Sci. 2014; 27(1):69-81. doi:10.1002/pts.2016

Fitri R, Reveny J, Harahap U, Syahputra HD, Nasri N. Anti-acne activity from biocellulose mask formula containing (Aloe vera (L.) Burm. F) essence combined with vitamin E. Indonesian J Pharm Clin Res. 2021; 04(01):2021-2022.

Sulastri E, Zubair MS, Lesmana R, Mohammed AFA, Wathoni N. Development and characterization of ulvan polysaccharides-based hydrogel films for potential wound dressing applications. Drug Des Devel Ther. 2021; 15:4213-4226. doi:10.2147/DDDT.S331120

Aswini K, Gopal NO, Uthandi S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 2020; 20(1). doi:10.1186/s12896-020-00639-6

Tranggono RI, Latifah F. Buku Pegangan Dasar Kosmetologi. 1st ed. (Djajadisastra J, Adimukti P, eds.). Sagung Seto; 2014.

Gänzle MG. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci. 2015; 2:106-117. doi:10.1016/j.cofs.2015.03.001

Mohammadkazemi F, Khademibarangenani R, Koosha M. The effect of oxidation time and concentration on physicochemical, structural, and thermal properties of bacterial nano-cellulose. Polym Sci Ser A. 2019; 61(3):265-273. doi:10.1134/S0965545X19030088

de Amorim JDP, de Souza KC, Duarte CR, Duarte I da S, Ribeiro F de AS, Silva GS, de Farias PMA, Stingl A, Costa AFS, Vinhas GM, Sarubbo LA. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett. 2020; 18(3):851-869. doi:10.1007/s10311-020-00989-9

Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb Biotechnol. 2019; 12(4):586-610. doi:10.1111/1751-7915.13392

Nisar T, Wang ZC, Alim A, Iqbal M, Yang X, S Lijun, Guo Y. Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging. CyTA J Food. 2019; 17(1):695-705. doi:10.1080/19476337.2019.1640798

Cazón P, Vázquez M, Velazquez G. Environmentally friendly films combining bacterial cellulose, chitosan, and Polyvinyl Alcohol: Effect of water activity on barrier, mechanical, and optical properties. Biomacromolecules. 2020; 21(2):753-760. doi:10.1021/acs.biomac.9b01457

Cazón P, Velazquez G, Vázquez M. Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocoll. 2020; 99:105323. doi:10.1016/j.foodhyd.2019.105323

Ludwiczak S, Mucha M. Modeling of water sorption isotherms of chitosan blends. Carbohydr Polym. 2010; 79(1):34-39. doi:10.1016/j.carbpol.2009.07.014

López-Palestina CU, Aguirre-Mancilla CL, Raya-Pérez JC, Ramirez-Pimentel JG, Vargas-Torres A, Hernández-Fuentes AD. Physicochemical and antioxidant properties of gelatin-based films containing oily tomato extract (Solanum lycopersicum L.). CyTA J Food. 2019; 17(1):142-150. doi:10.1080/19476337.2018.1564793

Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr Polym. 2013; 98(2):1585-1598. doi:10.1016/j.carbpol.2013.08.018

Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst. 2019; 3. doi:10.3389/fsufs.2019.00007

Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A. Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci. 2015; 16(12):14832-14849. doi:10.3390/ijms160714832

Keshk SM. Bacterial cellulose production and its industrial applications. J Bioprocess Biotech. 2014; 04(02):1-10. doi:10.4172/2155-9821.1000150

Jozala AF, de Lencastre-Novaes LC, Lopes AM, Santos-Ebinuma V de C, Mazzola PG, Pessoa Jr A, Grotto D, Gerenutti M, Chaud MV. Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol. 2016; 100(5):2063-2072. doi:10.1007/s00253-015-7243-4

Clasen C, Sultanova B, Wilhelms T, Heisig P, Kulicke WM. Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp. 2006; 244(1):48-58. doi:10.1002/masy.200651204

Wang Y, Zhao X, Li D, Wu Y, Wahid F, Xie Y, Zhong C. Review on the strategies for enhancing mechanical properties of bacterial cellulose. Published online 2022. doi:10.21203/rs.3.rs-1783762/v1

Cazón P, Vázquez M, Velazquez G. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polym Test. 2018; 69:536-544. doi:10.1016/j.polymertesting.2018.06.016

Surini S, Auliyya A. Formulation of an anti-wrinkle hydrogel face mask containing ethanol extract of noni fruit (Morinda citrifolia L.) for use as a nutracosmeceutical product. Int J Appl Pharm. 2017; 9:74-76. doi:10.22159/ijap.2017.v9s1.41_47

Seaman S. Dressing selection in chronic wound management. J Am Podiatr Med Assoc. 2002; 92(1):24-33.

Akintunde MO, Adebayo-Tayo BC, Ishola MM, Zamani A, Horváth IS. Bacterial cellulose production from agricultural residues by two Komagataeibacter sp. strains. Bioengineered. 2022; 13(4):10010-10025. doi:10.1080/21655979.2022.2062970

Rusdi RAA, Halim NA, Norizan MN, et al. Pre-treatment effect on the structure of bacterial cellulose from Nata de Coco (Acetobacter xylinum). Polimery. 2022; 67(3):110-118. doi:10.14314/polimery.2022.3.3

Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym. 2011; 84(1):96-102. doi:10.1016/j.carbpol.2010.10.072

Wang S, Han YH Chen J, Zhang D, Shi X, Ye Y, Chen D, Li M. Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers. 2018; 10(9):963. doi:10.3390/polym10090963

Wang J, Wan YZ, Luo HL, Gao C, Huang Y. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C. 2012; 32(3):536-541. doi:10.1016/j.msec.2011.12.006

Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M. Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer. 2007; 48(26):7623-7631. doi:10.1016/j.polymer.2007.10.039