Ethanol Extract of Anacardiumoccidentale Leaves and Musa sapientum Peels Co-Treatment Enhanced Cognitive and Olfactory Functions via Antioxidant Mechanism in Cadmium-Induced Brain Damage in Female Wistar Rats

Main Article Content

Uduak Inwang
Joseph Agha
Imaobong Etti
Emmanuel Nwuzor
Peter Odu

Abstract

Dementia, one of today's most important public health problems, affects cognitive function, resulting in memory loss. This research investigated the impact of co-administration of ethanol extract of Anacardiumoccidentale (AO) leaves and ripe Musa sapientum (MS) peels on cognitive and olfactory functions in cadmium-induced brain insult in female Wistar rats. Thirty mature female Wistar rats weighing between 75 and 154 g were randomly divided into six groups (n=5) for this study. Group 1 received 1 mL of distilled water. Group 2 received 100 mg/kg of Cadmium (Cd). Cd (100 mg/kg), donepezil (2.5 mg/kg), AO (200 mg/kg), MS (200 mg/kg), and 200 mg/kg of AO and MS were administered to groups 3, 4, 5, and 6 respectively. All groups received oral treatment once a day for 21 days. One hour after 21 days of treatment, the animals were assessed for cognitive and olfactory function using the radial maze and buried food tests. After the behavioural test, the animals were sacrificed by cervical dislocation on day 22, and biochemical evaluations of Superoxide Dismutase (SOD), Acetylcholinesterase Enzyme (AChE), Malondialdehyde (MDA), and histological analysis were conducted. In comparison to groups 2, 4, and 5, the neurobehavioural investigation's findings showed a significant (p<0.05) improvement in spatial and reference memory and olfactory responses, as well as elevated SOD levels and a significant (p<0.05) decrease in AChE and MDA activities after co-treatment with AO and MS. Furthermore, a section of the hippocampus showed moderate regeneration in groups co-treated with AO and MS. Conclusively, co-treatment with AO and MS exhibited a beneficial antioxidant and neuroprotective potential in mitigating Cd-induced brain insult.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Emmanuel Nwuzor, Department of Industrial and Medicinal Chemistry, David Umahi Federal University of Health Sciences, Uburu, Nigeria

International Institute for Infectious Diseases, Biosafety and Biosecurity Research, DUFUHS, Uburu, Nigeria.

How to Cite

Inwang, U., Agha, J., Etti, I., Nwuzor, E., & Odu, P. (2025). Ethanol Extract of Anacardiumoccidentale Leaves and Musa sapientum Peels Co-Treatment Enhanced Cognitive and Olfactory Functions via Antioxidant Mechanism in Cadmium-Induced Brain Damage in Female Wistar Rats. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2907 – 2913. https://doi.org/10.26538/tjnpr/v9i6.75

References

1.Weiss J, Tumosa N, Espinoza R, Bragg E, Morgan JC, Flatt J, McConnell ES, Whiting G. Research recommendations to address dementia workforce development needs. OBMGeriat. 2021; 5(1):1 - 8. doi:10.21926/obm.geriatr.2101162.

2.Arvanitakis Z, Shah RC, Bennett DA. Diagnosis and management of dementia. Jama. 2019; 322(16):1589-99. doi:10.1001/jama.2019.4782

3.Suciati S, Putri HR, Rizqiyah W, Ardianto C, Widyawaruyanti A. Evaluation of antioxidant and cholinesterase inhibitory activities of various extracts of Cassia spectabilis. Trop J. Nat Prod Res. 2022; 6(6):921–925. doi: 10.26538/tjnpr/v6i6.3.

4.Iheanacho CM, Akubuiro PC, Oseghale IO, Imieje VO, Erharuyi O, Ogbeide KO, Jideonwo AN, Falodun A. Evaluation of the antioxidant activity of the stem bark extracts of Anacardiumoccidentale (Linn) Anacardiaceae. Trop J. Phytochem. Pharm. Sci. 2023; 2(2):65–69. doi: 10.26538/tjpps/v2i2.4.

5.Javeed A, Dallora AL, Berglund JS, Ali A, Ali L, Anderberg P. Machine learning for dementia prediction: a systematic review and future research directions. J. Med. Syst. 2023; 47(1):17. Doi: 10.1007/s10916-023-01906-7.

6.Chinelo A. Michael's Memories: A Journey of Hope, Healing, Awareness, and Resilience. Includes" Care partner's guide, practical insights and toolkit for Ageing and Living Well with Dementia". FriesenPress. 2025.

7.Odu PO, Odu VK, Oyebanjo OT, Benneth B, Onasanwo SA. Cognitive And Neuroprotective Effects of Vernoniaamygdalina in Scopolamine-induced Memory Impaired Rats. Niger. J. Physiol. Sci.2024;39(2):233-40. https://doi.org/10.54548/njps.v39i2.9

8.Alfeo F, Lanciano T, Abbatantuono C, Gintili G, De Caro MF, Curci A, Taurisano P. Cognitive, emotional, and Daily Functioning domains involved in decision-making among patients with mild cognitive impairment: a systematic review. Brain sci. 2024; 14(3):278. https://doi.org/10.3390/brainsci14030278

9.Zou YM, Lu D, Liu LP, Zhang HH, Zhou YY. Olfactory dysfunction in Alzheimer's disease. Neuropsychiatr Dis Treat. 2016; 15:869-875. Doi: 10.2147/NDT.S104155.

10.Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol. Neurobiol. 2025; 62(2):1631 - 74. https://doi.org/10.1007/s12035-024-04333-y

11.Oliveira NN, Mothé CG, Mothé MG, de Oliveira LG. Cashew nut and cashew apple: a scientific and technological monitoring worldwide review. J. Food Sci. Technol. 2020; 57:12 - 21. https://doi.org/10.1007/s13197-019-04051-7

12.Inwang UA, Ukaegbu KC, Onyagu LU, Uchewa OO and Ogbonna ID: Synergistic effect of ethanol extract of Anacardiumoccidentale leaves and Musa sapeintum peels on fine motor function against cadmium-induced neurotoxicity in rats. Int J Pharm Sci& Res 2025; 16(3): 733 - 40. doi:10.13040/ijpsr.0975-8232.16(3).733-40

13.Gutiérrez-Paz C, Rodríguez-Moreno MC, Hernández-Gómez MS, Fernández-Trujillo JP. The Cashew Pseudofruit (Anacardiumoccidentale): Composition, Processing Effects on Bioactive Compounds and Potential Benefits for Human Health. Foods. 2024; 13(15):2357. https://doi.org/10.3390/foods13152357

14.de Freitas AS, Magalhães HC, Alves Filho EG, Garruti DD. Chemometric analysis of the volatile profile in peduncles of cashew clones and its correlation with sensory attributes. J. Food Sci. 2021; 86(12):5120 - 36. https://doi.org/10.1111/1750-3841.15957

15.Souza NC, de Oliveira JM, Morrone MD, Albanus RD, Amarante MD, Camillo CD, Langassner SM, Gelain DP, Moreira JC, Dalmolin RJ, Pasquali MA. Antioxidant and Anti‐Inflammatory Properties of Anacardiumoccidentale Leaf Extract. eCAM. 2017; 1:2787308. https://doi.org/10.1155/2017/2787308

16.Mohammad ZI, Saleha A. Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. J. Appl. Pharm. 2011; 1(5):14 - 20. https://doi.org/10.1155/2017/2787308

17.Okeke EC, Ene-Obong HN, Uzuegbunam AO, Ozioko A, Umeh SI, Chukwuone N. The Igbo traditional food system documented in four states in southern Nigeria. Indigenous peoples' food systems: The many dimensions of culture, diversity, and environment for nutrition and health. 2009; 251 - 82.

18.Inwang UA, Ben EE, Uchewa OO, Umoh EA, Nwaji AR. Ripe Musa sapientum Peels Exhibit Neuroprotection Against Lead Acetate-Induced Brain Damage in Wistar Rats. Nat Prod Commun. 2024; 19(7):1934578X241265192. https://doi.org/10.1177/1934578X241265192

19.Chabuck ZA, Al-Charrakh AH, Hindi NK, Hindi SK. Antimicrobial effect of aqueous banana peel extract, Iraq. Res. Gate. Pharm. Sci. 2013; 1:73 - 5.

20.Bilhman S, Ramanathan S, Dumjun K, Wunnoo S, Lethongkam S, Waen-ngoen T, Kaewnopparat N, Paosen S, Voravuthikunchai SP. Value-added from microwave-assisted extraction of Musa sapientum waste as an alternative safe and effective agent for the treatment of hyperpigmentation. Waste Biomass Valori. 2023; 14(5):1477 - 88. https://doi.org/10.1007/s12649-022-01969-6

21.Avram I, Gatea F, Vamanu E. Functional compounds from banana peel used to decrease oxidative stress effects. Processes. 2022;10(2):248. https://doi.org/10.3390/pr10020248

22.Ruczaj A, Brzóska MM. Environmental exposure of the general population to cadmium as a risk factor of the damage to the nervous system: A critical review of current data. JAT. 2023; 43(1): 66 - 88. https://doi.org/10.1002/jat.4322

23.Monroe RK, Halvorsen SW. Cadmium blocks receptor-mediated Jak/STAT signalling in neurons by oxidative stress. Free RadicBiol Med. 2006; 41(3):493 - 502. https://doi.org/10.1016/j.freeradbiomed.2006.04.023

24.Brookmeyer R, Evans DA, Hebert L, Langa KM, Heeringa SG, Plassman BL, Kukull WA. National estimates of the prevalence of Alzheimer's disease in the United States. A&D. 2011; 7(1):61-73. https://doi.org/10.1016/j.jalz.2010.11.007

25.Chapman RM, Mapstone M, Gardner MN, Sandoval TC, McCrary JW, Guillily MD, Reilly LA, DeGrush E. Women have farther to fall: gender differences between normal elderly and Alzheimer's disease in verbal memory engender better detection of Alzheimer's disease in women. JINS. 2011; 17(4):654 - 62. https://doi.org/10.1017/S1355617711000452

26.Institute of Laboratory Animal Resources (US). Committee on Care, Use of Laboratory Animals. Guide for the care and use of laboratory animals. US Department of Health and Human Services, Public Health Service, National Institutes of Health; 1986.

27.Zhu D, Montagne A, Zhao Z. Alzheimer's pathogenic mechanisms and underlying sex difference. Cell Mol Life Sci. 2021;78:4907 - 20. https://doi.org/10.1007/s00018-021-03830-w

28.Inwang UA, Davies KG, Ekong MB, Obasi CP, Onyebuenyi M, Nwaji AR. The anti-oxidative and cognitive properties of Zingiberofficinale rhizome ethanol extract and its dichloromethane and n-hexane fractions against aluminium chloride-induced neurotoxicity in Swiss mice. International Journal of Pharmaceutical Sciences and Research.2023;14(3):1196-201. http://dx.doi.org/10.13040/IJPSR.0975-8232.14(3).1196-01

29.Zou LB, Yamada K, Sasa M, Nabeshima T. Two phases of behavioral plasticity in rats following unilateral excitotoxic lesion of the hippocampus. Neurosci. 1999; 92(3):819 - 26. https://doi.org/10.1016/S0306-4522(99)00029-9

30.Machado CF, Reis-Silva TM, Lyra CS, Felicio LF, Malnic B. Buried food-seeking test for the assessment of olfactory detection in mice. Bio Protoc. 2018;8(12):e2897. doi: 10.21769/BioProtoc.2897.

31.Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colourimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7(2):88 - 95. https://doi.org/10.1016/0006-2952(61)90145-9

32.Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47(3): 469 -74.

33.Singh JC, Alagarsamy V, Parthiban P, Selvakumar P, Reddy YN. Neuroprotective potential of ethanolic extract of Pseudarthriaviscida (L) Wight and Arn against beta-amyloid(25-35)-induced amnesia in mice. Indian J BiochemBiophys. 2011; 48(3):197-201.

34.Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979; 95(2):351 - 8. https://doi.org/10.1016/0003-2697(79)90738-3

35.Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Research. 2013; 2:151. https://doi.org/10.12688/f1000research.2-151.v1

36.Perrotta G. General overview of "human dementia diseases": definitions, classifications, neurobiological profiles and clinical treatments. Gerontol Geriatric Stud. 2020; 6(1):GGS.000626. Doi:10.32474/GGS.2020.06.000626.

37.Malik R, Kalra S, Bhatia S, Al Harrasi A, Singh G, Mohan S, Makeen HA, Albratty M, Meraya A, Bahar B, Tambuwala MM. Overview of therapeutic targets in management of dementia. Biomed. Pharmacother. 2022;152:113168. https://doi.org/10.1016/j.biopha.2022.113168

38.Lee JY, Kho S, Yoo HB, Park S, Choi JS, Kwon JS, Cha KR, Jung HY. Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatr Dis Treat.2014:653 - 60. https://doi.org/10.2147/NDT.S58185

39.Werner S, Nies E. Olfactory dysfunction revisited: a reappraisal of work-related olfactory dysfunction caused by chemicals. J. Occup. Med. Toxicol. 2018;13(1):28. https://doi.org/10.1186/s12995-018-0209-6

40.Sam C, Bordoni B. Physiology, Acetylcholine. StatPearls [Internet]. 2023 Apr 10 [cited 2025 Apr 9]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK557825/

41.Lamtai M, Chaibat J, Ouakki S, Berkiks I, Rifi EH, El Hessni A, Mesfioui A, Hbibi AT, Ahyayauch H, Essamri A, Ouichou A. Effect of chronic administration of cadmium on anxiety-like, depression-like and memory deficits in male and female rats: possible involvement of oxidative stress mechanism. J. Behav. Brain Sci. 2018; 8(5):240-68. doi: 10.4236/jbbs.2018.85016

42.Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Mater. 2021; 14(15):4135. https://doi.org/10.3390/ma14154135

43.Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update. Mol. 2023; 28(16):5979. https://doi.org/10.3390/molecules28165979

44.Praveena A, Saraswathi PL, Saranya V, Yuvarani A. A pharmacological perspectives of Musa sapientum peels against lung cancer: An in vitro andin silico study. J. Cancer Res. Ther. 2023;618-22. doi: 10.4103/jcrt.jcrt_583_22

45.Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. ActaNeuropathol.2017;134(2):221-240. doi: 10.1007/s00401-017-1703-0. ​