In Silico Studies of Stylissa Carteri-Compounds against EGFR and RAF Proteins in Triple-Negative Breast Cancer
Main Article Content
Abstract
Triple-negative breast cancer (TNBC) represents a highly aggressive form of breast cancer, and the treatment options available are regarded as particularly challenging. The lack of specific molecular targets, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), accounts for this situation. This study investigates the molecular interactions between natural compounds derived from Stylissa carteri and Epidermal Growth Factor Receptor (EGFR) and RAF proteins, which are promising targets for therapeutic strategies in triple-negative breast cancer (TNBC), utilizing in silico techniques. Nine compounds derived from Stylissa carteri were obtained from the Knapsack and PubChem servers. These compounds' biological activities and interactions with EGFR and RAF proteins were analyzed. The findings indicated that the nine compounds exhibited various biological activities inhibiting TNBC. Docking and molecular dynamics analysis revealed that stevensine and dibutyl phthalate exhibited the highest binding affinity and the most stable interactions with the EGFR-RAF protein complex. Docking analysis revealed binding affinity values between −5.4 and −7.9 kcal/mol. The most robust binding interaction was noted for (Z)-hymenialdisine with RAF (−7.9 kcal/mol), whereas 1,2-benzenediol exhibited the weakest interaction (−5.7 kcal/mol). Dibutyl phthalate exhibited the highest binding affinity for EGFR, measured at −7.0 kcal/mol. The findings indicate that compounds derived from Stylissa carteri exhibit potential efficacy in targeting EGFR and RAF in triple-negative breast cancer (TNBC).
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget. 2016; 8(1):1913. Doi: 10.18632/oncotarget.12284
2.Zagami P, Carey LA. Triple negative breast cancer: Pitfalls and progress. NPJ breast cancer. 2022; 8(1):95. Doi: 10.1038/s41523-022-00468-0.
3.Bou Zerdan M, Ghorayeb T, Saliba F, Allam S, Bou Zerdan M, Yaghi M, Bilani N, Jaafar R, Nahleh Z. Triple negative breast cancer: updates on classification and treatment in 2021. Cancers. 2022; 14(5):1253. Doi: 10.3390/cancers14051253.
4.Obidiro O, Battogtokh G, Akala EO. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharm. 2023; 15(7): 1796. Doi: 10.3390/pharmaceutics15071796.
5.Sukumar J, Gast K, Quiroga D, Lustberg M, Williams N. Triple-negative breast cancer: promising prognostic biomarkers currently in development. Expert Rev Anticancer Ther, 2021; 21(2):135-48. Doi: 10.1080/14737140.2021.1840984.
6.Bi J, Wu Z, Zhang X, Zeng T, Dai W, Qiu N, Xu M, Qiao Y, Ke L, Zhao J, Cao X. TMEM25 inhibits monomeric EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast cancer progression. Nat. Commun, 2023; 14(1):2342. Doi: 10.1038/s41467-023-38115-2.
7.Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat, 2012; 136:331-45. Doi: 10.4103/2278-0513.155989.
8.Nami B, Maadi H, Wang Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers, 2018;10(10):342. Doi: 10.3390/cancers10100342.
9.Pallela R, Ehrlich H. Marine sponges: Chemicobiological and biomedical applications. Marine Sponges: Chemicobiological and Biomedical Applications, 2016;1–381. Doi: 10.1007/978-81-322-2794-6.
10.Bhatnagar I. Marine sponges: Chemicobiological and biomedical applications. Pallela R, Ehrlich H, editors. New Delhi, India: Springer India; 2016. Doi: 10.1007/978-81-322-2794-6.
11.Bashari, M.H., Huda, F., Tartila, T.S., Shabrina, S., Putri, T., Qomarilla, N., Atmaja, H., Subhan, B., Sudji, I.R. and Meiyanto, E. Bioactive compounds in the ethanol extract of marine sponge Stylissa carteri demonstrates potential anti-cancer activity in breast cancer cells. Asian Pac. J. Cancer Prev, 2019; 20(4), p.1199. Doi: 10.31557/apjcp.2019.20.4.1199.
12.Abdelhameed, R.F., Habib, E.S., Eltahawy, N.A., Hassanean, H.A., Ibrahim, A.K., Mohammed, A.F., Fayez, S., Hayallah, A.M., Yamada, K., Behery, F.A. and Al-Sanea, M.M. New cytotoxic natural products from the red sea sponge Stylissa carteri. Mar. Drugs, 2020; 18(5), p.241. Doi: 10.3390/md18050241.
13.Hardani IN, Damara FA, Nugrahani AD, Bashari MH. Ethanol extract of Stylissa carteri induces cell death in parental and paclitaxel-resistant cervical cancer cells. Int. j. integr. health sci., 2018; 6(2):91-96. Doi: 10.15850/ijihs.v6n2.1378.
14.Jannah JN, Fianza PI, Putri T, Bashari MH. The ethyl acetate fraction of sponge Stylissa carteri decreases viability in HER2+ trastuzumab-resistant breast cancer cells. J Kedokt Kesehat Indones. 2019; 10(3):239–45. Doi: 10.20885/jkki.vol10.iss3.art6.
15.Bashari MH, Fadhil M, Aulia Y, Sari AK, Putri T, Qomarilla N, Atmaja, H., Sudji, I.R., Ariyanto, E.F., Indrati, A.R. and Rohmawaty, E. The Ethyl Acetate Fraction of Marine Sponge Stylissa carteri Induces Breast Cancer Cell Death via Upregulation of Mcl-1S: an In vitro Study. Asian Pac. J. Cancer Prev. 2022; 23(5):1653–1660. Doi: 10.31557/apjcp.2022.23.5.1653.
16.Pallela R, Ehrlich H. Marine sponges: Chemicobiological and biomedical applications. Marine Sponges: Chemicobiological and Biomedical Applications. 2016; 1–381. Doi: 10.1007/978-81-322-2794-2796.
17.Calcabrini C, Catanzaro E, Bishayee A, Turrini E, Fimognari C. Marine sponge natural products with anticancer potential: An updated review. Mar Drugs., 2017; 15(10), 310. Doi: 10.3390/md15100310.
18.Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine invertebrate metabolites with anticancer activities: Solutions to the “supply problem.” Mar Drugs., 2016; 14(5); 98. Doi: 10.3390/md14050098.
19.Ebada SS, Lin WH, Proksch P. Bioactive sesterterpenes and triterpenes from marine sponges: Occurrence and pharmacological significance. Mar Drugs. 2010; 8(2):313–346. Doi: 10.3390/md8020313.
20.Calado R, Mamede R, Cruz S, Leal MC. Updated Trends on the Biodiscovery of New Marine Natural Products from Invertebrates. Mar Drugs. 2022; 20(6); 389. Doi: 10.3390/md20060389.
21.Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4):337–41. Doi: 10.1016/j.ddtec.2004.11.007.
22.Ijoma IK, Okafor CE, Ajiwe VI. Computational Studies of 5-methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop. J. Nat. Prod. Res. 2024; 8(10); 8835-8841. Doi: 10.26538/Trop. J. Nat. Prod. Res./v8i10.28.
23.Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, Li W, Liu G, Tang Y. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019; 35(6):1067-9. Doi: 10.1093/bioinformatics/bty707.
24.KNApSAcK Core System [Internet]. 2024 [cited 2023 Jun 24]. Available from: http://www.knapsackfamily.com/knapsack_core/top.php
25.RCSB PDB: Homepage [Internet]. 2024 [cited 2023 Jun 24]. Available from: https://www.rcsb.org/
26.Way2Drug - main [Internet]. 2024 [cited 2024 Mar 31]. Available from: https://www.way2drug.com/passonline/
27.Ijoma KI, Ajiwe VI. Methyl ferulate induced conformational changes on DeOxyHbS: Implication on sickle erythrocyte polymerization. Mediterr. J. Chem. 2022; 12(1):100-11. Doi: 10.13171/mjc02208061631ijoma.
28.Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Biol. methods protoc. 2015; 243-50. Doi: 10.1007/978-1-4939-2269-7_19.
29.Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B. and Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2:19–25. Doi: 10.1016/j.softx.2015.06.001.
30.Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D. Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. J. Mol. Liq. Elsevier B.V.; 2022; 354. Doi: 10.1016/j.molliq.2022.118901.
31.Permana S, Hanum HA, Azizah MR, Ilmiyah SZ, Permana AZ, Norahmawati E, Widodo E, Fakurazi S, Kawamoto Y, Endharti AT. In Silico Investigations and Potential Approaches of Tectona grandis via Targeting MMP-9 for Triple Negative Breast Cancer. Trop. J. Nat. Prod. Res. 2024; 8(8); 8047-8053. Doi: 10.26538/Trop. J. Nat. Prod. Res./v8i8.18.
32.Tuan ND, Quoc NC, Ly DN, Tuyen BT, Quang LD, Phien HH, De TQ, Men TT. Bioactive Extracts from Padina boryana Thivy from Phu Quoc Island, Vietnam: In vitro Antioxidant, Anticancer, Alpha-glucosidase inhibitory, Anti-inflammatory, Antimicrobial, and Hepatoprotective Activities. Trop. J. Nat. Prod. Res. 2024; 8(12); 9555 – 9559, Doi: 10.26538/Trop. J. Nat. Prod. Res./v8i12.29.
33.Boroujeni, M.B., Dastjerdeh, M.S., Shokrgozar, M., Rahimi, H. and Omidinia, E. Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions. Inform. Med. Unlocked. 2021; 23, p.100514. Doi: 10.1016/j.imu.2021.100514.
34.Patel K, Laville R, Martin MT, Tilvi S, Moriou C, Gallard JF, Ermolenko L, Debitus C, Al‐Mourabit A. Unprecedented Stylissazoles A–C from Stylissa carteri: Another Dimension for Marine Pyrrole‐2‐aminoimidazole Metabolite Diversity. Angew. Chem. Int. Ed. 2010; 49(28):4775-9. Doi: 10.1002/anie.201000444.
35.Wei Y, Li S, Li Z, Wan Z, Lin J. Interpretable-ADMET: a web service for ADMET prediction and optimization based on deep neural representation. Bioinform. 2022; 38(10):2863-71. Doi: 10.1002/anie.201000444.
36.Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: A new perspective. Cancer. John Wiley and Sons Inc.; 2014; 120. Doi: 10.1002/cncr.28864.
37.Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. BioMed Central Ltd; 2020. 13; 19-1. Doi: 10.1186/s13045-020-00949-4.
38.Sibuh BZ, Khanna S, Taneja P, Sarkar P, Taneja NK. Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci. 2021; 273. Doi: 10.1016/j.lfs.2021.119305.
39.Moharana M, Pattanayak SK, Khan F. Molecular recognition of bio-active triterpenoids from Swertia chirayita towards hepatitis Delta antigen: a mechanism through docking, dynamics simulation, Gibbs free energy landscape. J Biomol Struct Dyn. 2023; 41(24):14651–64. Doi: 10.1080/07391102.2023.2184173.
40.Sharma VR, Panwar A, Sharma AK. Molecular Dynamic Simulation Study on Chromones and Flavonoids for the In Silico Designing of a Potential Ligand Inhibiting mTOR Pathway in Breast Cancer. Curr. Pharmacol. Rep. Springer Science and Business Media Deutschland GmbH; 2020; 6. 373-379, Doi: 10.1007/s40495-020-00246-1.
41.D Durrant J, McCammon AJ. Molecular Dynamics Simulations and Drug Discovery. BMC Biol. 2011; 9(71):1–9. Doi: 10.1186/1741-7007-9-71.
42.Fehske H, Schneider R, Weisse A, editors. Computational many-particle physics. Springer; 2007; 774. Doi: 10.1007/978-3-540-74686-7.
43.Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. With important anticancer drug targets. PLoS One. 2021; 16. https://Doi: 10.1371/journal.pone.0254035.
44.Rácz A, Mihalovits LM, Bajusz D, Héberger K, Miranda-Quintana RA. Molecular Dynamics Simulations and Diversity Selection by Extended Continuous Similarity Indices. J Chem Inf Model. 2022 Jul; 62(14):3415–25. Doi: 10.1021/acs.jcim.2c00433.
45.Ghorab MM, Abdel-Kader MS, Alqahtani AS, Soliman AM. Synthesis of some quinazolinones inspired from the natural alkaloid L-norephedrine as EGFR inhibitors and radiosensitizers. J. Enzyme Inhib. Med. Chem. 2021; 36(1):218–37. Doi: 10.1080/14756366.2020.1854243.