Integrative In Vitro and In Silico Analysis of Origanum majorana Flavonoids: Targeting β-Lactamase and Penicillin-Binding Proteins Through Conserved Region-Based Structural Optimization
Main Article Content
Abstract
Growing bacterial pathogens with antibiotic resistance necessitates novel therapeutic strategies, raising the exploration and exploitation of the potential of plant natural products as alternative drugs. This study investigated the antibacterial potential of flavonoids from Origanum majorana L. through a combined in vitro and in silico approach, focusing on their inhibitory effects against β-lactamase and penicillin-binding protein. The in vitro antibacterial activities of O. majorana extracts, Apigenin (a flavonoid), and imipenem were evaluated against bacterial isolates through inhibition zone assays, and the analyses of minimal inhibitory concentration and minimal bactericidal concentration. In silico molecular docking was performed to elucidate the inhibition mechanism and assess binding affinities and interactions between flavonoids and target proteins. The docking results revealed that flavonoids exhibited stronger binding affinities with both target proteins (-9.5 kcal/mol and -5.8 kcal/mol) compared to imipenem, particularly against β-lactamases. The flavonoids enhanced the binding and stability of protein-ligand complexes through key molecular interactions, increasing the inhibitory effects on proteins. Our findings highlighted the potential of O. majorana flavonoids as promising resistance-modifying agents against β-lactam-resistant bacterial infections. Notably, a genomic analysis-based conserved region prediction approach was employed to construct a high-quality, structurally optimized model of the target proteins, enabling superior binding interactions with flavonoids. This structural refinement strategy enhances the predictive accuracy of computational drug design and may facilitate the development of novel antibacterial agents with improved specificity. Continued exploration of conserved region-based protein modeling can significantly enhance the rational design of next-generation inhibitors with improved binding affinity and therapeutic efficacy.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Bouyahya A, Chamkhi I, Benali T, Guaouguaou F-E, Balahbib A, El Omari N, Taha D, Belmehdi O, Ghokhan Z, El Menyiy N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. J Ethnopharmacol. 2021;265:113318.doi: 10.1016/j.jep.2020.113318
2.Grigore-Gurgu L, Dumitrașcu L, Aprodu I. Aromatic herbs as a source of bioactive compounds: An overview of their antioxidant capacity, antimicrobial activity, and major applications. Molecules. 2025;30(6):1304.doi: 10.3390/molecules30061304
3.Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules. 2022;27(4):1149.doi: 10.3390/molecules27041149
4.Duletić-Laušević S, Aradski AA, Kolarević S, Vuković-Gačić B, Oalđe M, Živković J, Šavikin K, Marin PD. Antineurodegenerative, antioxidant and antibacterial activities and phenolic components of Origanum majorana L.(Lamiaceae) extracts. J Appl Bot Food Qual. 2018;91:126-34.doi: 10.5073/JABFQ.2018.091.018
5.Dabhi M, Patel R, Shah V, Soni R, Saraf M, Rawal R, Goswami D. Penicillin-binding proteins: The master builders and breakers of bacterial cell walls and its interaction with β-lactam antibiotics. JPP. 2024;15(2):215-32.doi: 10.1007/s42485-024-00135-x
6.Martin JF, Alvarez-Alvarez R, Liras P. Penicillin-binding proteins, β-lactamases, and β-lactamase inhibitors in β-lactam-producing actinobacteria: Self-resistance mechanisms. Int J Mol Sci. 2022;23(10):5662.doi: 10.3390/ijms23105662
7.Hothan KA, Alawami MA, Baothman EA, Alghanem FA, Al-Haddad DM, Al Daerwish RI, Albetiyan ZA, Alghanem GA, Bayazeed KA, Al Yusuf GA. Types of upper and lower respiratory tract infection in pediatrics. Int J Community Med Public Health. 2022;9:4689.doi: 10.18203/2394-6040.ijcmph20223231
8.Somerville VS, Braakhuis AJ, Hopkins WG. Effect of flavonoids on upper respiratory tract infections and immune function: A systematic review and meta-analysis. Adv Nutr. 2016;7(3):488-97.doi: 10.3945/an.115.010538
9.Huard RC, de Oliveira Lazzarini LC, Butler WR, van Soolingen D, Ho JL. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol. 2003;41(4):1637-50.doi: 10.1128/JCM.41.4.1637-1650.2003
10.Gennaro AR. Remington: the Science and of Pharmacology Practice. ed. t, editor: A Wolters Kluwer, Co. Philadelphia US A. Ch; 2001. 87 p.
11.Bauer AW, Kirbay WA, Sherris JS, Turk M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45:493-6.
12.Drago L, Mombelli B, Ciardo G, Vecchi ED, Gismondo M. Effects of three different fish oil7 formulations on Helicobacter pylori growth and viability: In vitro study. J Chemother. 1999;11(3):207-10.doi: 10.1179/joc.1999.11.3.207
13.Mukherjee P, Kakali Saha KS, Giri S, Pal M, Saha B. Antifungal screening of Nelumbo nucifera (Nymphaeaceae) rhizome extract. Indian J Microbiol. 1995;35:327-30.
14.NCCLS. Methods for dilution antimicrobial susceptibility tests of bacteria that grow aerobically. Approved Standard M100-S12. 2002.
15.Swift ML. GraphPad prism, data analysis, and scientific graphing. J Chem Inf Model. 1997;37(2):411-2.doi: 10.1021/ci960402j
16.Miles R, Amyes S. Laboratory control of antimicrobial therapy. Mackie and McCartney practical medical microbiology. 1996;14:151-78.
17.Ericsson HM, Sherris JC. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathologicaet Microbiologica Scand. 1971;Section B Suppl. 217 : 1- 90.
18.Consortium U. UniProt: A worldwide hub of protein knowledge. Nuc Acids Res. 2019;47(D1):D506-D15.doi: 10.1093/nar/gky1049
19.Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. 1999;41:95-98. Oxford.
20.Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-9.doi: 10.1038/s41586-021-03819-2
21.Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nuc Acids Res. 2018;46(W1):W296-W303.doi: 10.1093/nar/gky427
22.Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9.doi: 10.1002/pro.5560020916
23.Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277: Elsevier; 1997. p. 396-404.
24.Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283-91.doi: 10.1107/S0021889892009944
25.Agnihotry S, Pathak, R. K., Singh, D. B., Tiwari, A., & Hussain, I. Protein structure prediction. Elsevier eBooks. 2022:177–88.doi: 10.1016/B978-0-323-89775-4.00023-7
26.Heo L, Park H, Seok C. GalaxyRefine: Protein structure refr driven by side-chain repacking. Nuc Acids Res. 2013;41(W1):W384-W8.doi: 10.1093/nar/gkt458
27.DeLano WL. Pymol: An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40(1):82-92.
28.Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-61.doi: 10.1002/jcc.21334
29.Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA. PubChem substance and compound databases. Nuc Acids Res. 2016;44(D1):D1202-D13.doi: 10.1093/nar/gkv951
30.Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.doi: 10.1002/jcc.20084
31.Biovia DS. Biovia Discovery Studio Visualizer. San Diego: San Diego; 2020.
32.Ullah K, Baloch M, Saleem F, Khan AA, Saeed H, Islam M. Antibiotic susceptibility patterns of bacterial isolates of patients with upper respiratory tract infections. Braz J Pharm Sci. 2022;58:e20484.doi: 10.1590/s2175-97902022e20484
33.Gomes F, Dias MI, Lima Â, Barros L, Rodrigues ME, Ferreira IC, Henriques M. Satureja montana L. and Origanum majorana L. decoctions: Antimicrobial activity, mode of action and phenolic characterization. Antibiotics. 2020;9(6):294.doi: 10.3390/antibiotics9060294
34.Ghazal TSA, Schelz Z, Vidács L, Szemerédi N, Veres K, Spengler G, Hohmann J. Antimicrobial, multidrug resistance reversal and biofilm formation inhibitory effect of Origanum majorana extracts, essential oil and monoterpenes. Plants. 2022;11(11):1432.doi: 10.3390/plants11111432
35.Sternke M, Tripp KW, Barrick D. The use of consensus sequence information to engineer stability and activity in proteins. Methods Enzymol. 643: Elsevier; 2020. p. 149-79.
36.Pestana-Nobles R, Aranguren-Díaz Y, Machado-Sierra E, Yosa J, Galan-Freyle NJ, Sepulveda-Montaño LX, Kuroda DG, Pacheco-Londoño LC. Docking and molecular dynamic of microalgae compounds as potential inhibitors of beta-lactamase. Int J Mol Sci. 2022;23(3):1630.doi: 10.3390/ijms23031630
37.Masumi M, Noormohammadi F, Kianisaba F, Nouri F, Taheri M, Taherkhani A. Methicillin‐resistant Staphylococcus aureus: Docking‐based virtual screening and molecular dynamics simulations to identify potential penicillin‐binding protein 2a inhibitors from natural flavonoids. Int J Microbiol. 2022;2022(1):9130700.doi: 10.1155/2022/9130700
38.Spassov DS. Binding affinity determination in drug design: Insights from lock and key, induced fit, conformational selection, and inhibitor trapping models. Int J Mol Sci. 2024;25(13):7124.doi: 10.3390/ijms25137124
39.Alwaili MA, Alkhayl FFA, Rudayni HA, Allam AA, Altoom NG, Lamsabhi AM, Kamel EM. Unraveling molecular mechanisms of β-glucuronidase inhibition by flavonoids from Centaurea scoparia: Integrated in silico and in vitro insights. New J Chem. 2024;48(32):14236-52.doi: 10.1039/D4NJ02393E
40.Huang Y-S, Zhou H. Breakthrough advances in beta-lactamase inhibitors: New synthesized compounds and mechanisms of action against drug-resistant bacteria. Pharmaceuticals. 2025;18(2):206.doi: 10.3390/ph18020206
41.Agarwal V, Tiwari A, Varadwaj P. An extensive review on β-lactamase enzymes and their inhibitors. Curr Med Chem. 2023;30(7):783-808.doi: 10.2174/0929867329666220620165429
42.Bertonha AF, Silva CCL, Shirakawa KT, Trindade DM, Dessen A. Penicillin-binding protein (PBP) inhibitor development: A 10-year chemical perspective. EBM. 2023;248(19):1657–70.doi: 10.1177/15353702231208407
43.Rudrapal M, Sarkar B, Deb P, Bendale A, Nagar A. Addressing antimicrobial resistance by repurposing polyphenolic phytochemicals with novel antibacterial potential. Polyphenols: Food, Nutraceutical, and Nanotherapeutic Applications. 2023:260-89.doi: 10.1002/9781394188864.ch13
44.Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, Zhang X, Wang J, Wan Y. Discovery of quercetin and its analogs as potent OXA-48 beta-lactamase inhibitors. Front pharmacol. 2022;13:926104.doi: 10.3389/fphar.2022.926104