Analysis of Propolis Samples from Diverse Geographical Locations in Western Nigeria Using Gas Chromatography-Mass Spectrometry

Main Article Content

David G. Oke
David O. Adekunle
Oladapo J. Olaosebikan
Eniola F. Olujinmi
Kolawole A. Oyebamiji

Abstract

Honeybee produce a complex resinous substance called propolis, this substance has shown promising biological activities and potential therapeutic applications. Thus, it is important to identify potential biomarkers that may be indicative of particular botanical sources or geographical origins by carrying out a comparative analysis of propolis samples collected from four diverse geographical locations in Western Nigeria (Ogun, Osun, Oyo, and Ondo states). Samples were extracted using ethanol and Gas Chromatography-Mass Spectrometry (GCMS) was employed to characterize the chemical composition of these samples, revealing significant variations across the different regions. The Ogun State sample was rich in phenolic compounds. In contrast, the samples from Osun and Oyo states exhibited a high abundance of triterpenoids, with β-Amyrone (99 %, 90%) and β-Amyrin (83 %, 86 %) respectively as major components while the sample from Ondo was rich in esters. Notably, n-hexadecanoic acid was identified in all four samples, suggesting its ubiquity in Western Nigerian propolis. N-hexadecanoic acid (palmitic acid) is a vital saturated fatty acid having a variety of biological functions in humans, insects, and animals. These compositional differences likely reflect the diverse flora available to bees in each region, highlighting the importance of geographical origin in determining propolis properties. Therefore, the observed chemical diversity suggests potential variations in biological activities and therapeutic applications of propolis from these different locations. This study provides valuable insights into the chemical signatures of Western Nigerian propolis, laying the groundwork for further investigations into their biological activities and potential applications in natural product development and therapeutics.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Oke, D. G., Adekunle, D. O., Olaosebikan, O. J., Olujinmi, E. F., & Oyebamiji, K. A. (2025). Analysis of Propolis Samples from Diverse Geographical Locations in Western Nigeria Using Gas Chromatography-Mass Spectrometry. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2874-2879. https://doi.org/10.26538/tjnpr/v9i6.70

References

1.Stojanović ST, Najman SJ, Popov BB, Najman SS. Propolis: chemical composition, biological and pharmacological activity–a review. Acta Med. Medianae. 2020; 59(2).

2.Rivera-Yañez N, Rivera-Yañez CR, Pozo-Molina G, Méndez-Catalá CF, Méndez-Cruz AR, Nieto-Yañez O. Biomedical properties of propolis on diverse chronic diseases and its potential applications and health benefits. Nutrients. 2020;13(1):78.

3.Siheri W, Alenezi S, Tusiimire J, Watson DG. The chemical and biological properties of propolis. Bee products-chemical and biological properties. 2017:137-78.

4.Shanahan M, Spivak M. Resin use by stingless bees: A review. Insects. 2021;12(8):719.

5.Adekunle OD, Adeleke OA, Odugbemi AI, Faboro EO, Lajide L. In vitro and in silico screening and identification of potential bioactive anthraquinones of Morinda lucida benth against pathogenic bacterial target proteins. Discov. Appl. Sci. 2024; 6(6): 295.

6.Li C. Understanding, Conservation, and Protection of Precious Natural Resources: Bees. Environ. Nat. Resour. Eng. 2021: 1-51.

7.Dezmirean DS, Paşca C, Moise AR, Bobiş O. Plant sources responsible for the chemical composition and main bioactive properties of poplar-type propolis. Plants. 2020; 10(1): 22.

8.Kasote D, Bankova V, Viljoen AM. Propolis: Chemical diversity and challenges in quality control. Phytochemistry Reviews. 2022; 21(6): 1887-911.

9.Alvear M, Santos E, Cabezas F, Pérez-SanMartín A, Lespinasse M, Veloz J. Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of Chilean propolis. Plants. 2021;10(8): 1543.

10.Obateru RO, Okhimamhe AA, Fashae OA, Aweda E, Dragovich D, Conrad C. Community-based assessment of the dynamics of urban landscape characteristics and ecosystem services in the rainforest and guinea savanna ecoregions of Nigeria. J. Environ. Manag. 2024;360: 121191.

11.Belmehdi O, El Menyiy N, Bouyahya A, El Baaboua A, El Omari N, Gallo M, Montesano D, Naviglio D, Zengin G, Skali Senhaji N, Goh BH. Recent advances in the chemical composition and biological activities of propolis. Food Rev. Int. 2023; 39(9): 6078-128.

Vivithanaporn P. Hexadecanoic acid-enriched extract of Halymenia durvillei induces apoptotic and autophagic death

12.Adekunle D, Faboro E, Lajide L. Identification and quantification of bioactive compounds in different extracts of Morinda lucida benth (rubiaceae) root using GC–MS analysis. J. Niger. Soc. Phys. Sci. 2023:1534.

13.Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol., 2005; 4(7): 685-8.

14.Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti- methicillin resistant Staphylococcus aureus activity. BMC Complement. Altern. Med. 2005;5: 1-7.

15.Baeshen NA, Almulaiky YQ, Afifi M, Al-Farga A, Ali HA, Baeshen NN, Abomughaid MM, Abdelazim AM, Baeshen MN. GC-MS analysis of bioactive compounds extracted from plant Rhazya stricta using various solvents. Plants. 2023;12(4):960.

16.Almulaiky YQ, AL-Farga A. Evaluation of antioxidant enzyme content, phenolic content, and antibacterial activity of Commiphora gileadensis grown in Saudi Arabia. Main Group Chem. 2021;19(4):329-43.

17.Bobiş O. Plants: Sources of diversity in propolis properties. Plants. 2022;11(17): 2298.

18.Saini N, Anmol A, Kumar S, Wani AW, Bakshi M, Dhiman Z. Exploring phenolic compounds as natural stress alleviators in plants-a comprehensive review. Physiol. Mol. Plant Pathol. 2024:102383.

19.Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022;23(5):2690.

20.Elufioye TO, Berida TI. GC-MS analysis and antioxidant activity of Spondias purpurea L (Anacardiaceae). Pharmacogn. J. 2018;10(5).

21.Adnan M, Chy MN, Kamal AM, Barlow JW, Faruque MO, Yang X, Uddin SB. Evaluation of anti-nociceptive and anti- inflammatory activities of the methanol extract of Holigarna caustica (Dennst.) Oken leaves. J. Ethnopharmacol. 2019;236: 401-11.

22.Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and anti-quorum sensing activities of the different solvent extracts of Embelia ruminata. S. Afr. J. Bot. 2022;151: 996-1007.

23.Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Natural Product Reports. 2023;40(8):1303-53.

24.Mamedov IG, Shikhaliyeva IM, Mamedova YV, Maharramov AM. Some acetophenone derivatives as corrosion inhibitors. Kimya Problemleri. 2019;(2): 302-9.

25.Edet UO, Nwaokorie FO, Mbim EN, Asanga EE, Agbor YO, Okoroiwu HU, Edet BO, Umoafia N, Nkang A. Evaluation of Annona muricata extract against Staphylococcus aureus isolate and in-silico activity of bioactive compounds against Capsular protein (Cap5O). BMC Complement. Med. Ther. 2022;22(1): 192.

26.Odu NM, Akor J, Eze LA, Nweze JA, Nweze JE, Orjiocha SI, Ejembi DO, Onyeyilim EL, Nwanguma BC. Anti- inflammatory and Antioxidant Activities of Selected Fractions of Parinari kerstingii Leaf Extract. Trop. J. Nat. Prod. Res. 2023;7(10): 4954-60.

27.Skanda S, Vijayakumar BS. Antioxidant and anti- inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr. Microbiol. 2021;78(4): 1317-23.

28.Sangpairoj K, Settacomkul R, Siangcham T, Meemon K, Niamnont N, Sornkaew N, Tamtin M, Sobhon P, of human triple-negative breast cancer cells by upregulating ER stress. Asian Pac. J. Trop. Biomed. 2022;12(3): 132-40.

29.Ravi L, Krishnan K. Research article cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J. Cell Biol. 2017;12:20-7.

30.Montecillo-Aguado M, Tirado-Rodriguez B, Huerta-Yepez S. The involvement of polyunsaturated fatty acids in apoptosis mechanisms and their implications in cancer. Int. J. Mol. Sci. 2023;24(14):11691.

31.Zhou S, Zhu H, Xiong P, Shi L, Bai W, Li X. Spore oil- functionalized selenium nanoparticles protect pancreatic beta cells from palmitic acid-induced apoptosis via inhibition of oxidative stress-mediated apoptotic pathways. Antioxidants. 2023;12(4):840.

32.Hua Y, Cao H, Peng Y, Liu J, Li X, Jin J, Shi X. miR‐429 inhibits palmitic acid‐induced apoptosis of porcine subcutaneous preadipocytes by targeting SOX5. Anim. Res. One Health. 2024;2(3):250-9.

33.Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, Zhang X, Wang R, Kong D. Palmitic acid inhibits prostate cancer cellproliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci. 2021;286:120046.

34.Singh S. Overview of Lipid Metabolism and its Significance. Cape Comorin Publisher.:130.

35.Ceja-Galicia ZA, Cespedes-Acuña CL, El-Hafidi M. Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases. Int. J. Mol. Sci. 2025;26(2):788.

36.Yoshida K, Morishima Y, Ishii Y, Mastuzaka T, Shimano H, Hizawa N. Abnormal saturated fatty acids and sphingolipids metabolism in asthma. Respir. Investig. 2024;62(4):526-30.

37.Cassinelli S, Viñola-Renart C, Benavente-Garcia A, Navarro-Pérez M, Capera J, Felipe A. Palmitoylation of voltage-gated ion channels. Int. J. Mol. Sci. 2022;23(16):9357.

38.Mawazi SM, Ann J, Othman N, Khan J, Alolayan SO, Al thagfan SS, Kaleemullah M. A review of moisturizers; history, preparation, characterization and applications. Cosmetics. 2022;9(3):61.