Phenotypic and Genotypic Characterization of Histamine-producing Bacillus Species and Enterobacter cloacae Isolated from Fermented African Locust Beans in Enugu State, Nigeria

Main Article Content

Cyril C. Adonu
James N. Ezema
Patrick Onyi
Restus Onwusoba

Abstract

Bacillus and Enterobacter species contaminate many types of food products. This study aimed to determine the prevalence, histamine-producing ability and antibiotic resistance profiles of Bacillus and Enterobacter species in African locust beans in Enugu State, Nigeria. One hundred and fifty fermented locust bean samples were used in this study. Bacillus and Enterobacter species were isolated and confirmed by molecular method and subsequently screened for histamine production. Presence of histamine in the fermented samples was screened for, using HPLC. The isolates were further subjected to antibiotic sensitivity tests using appropriate methods. PCR techniques were used to dectect virulence factors in the isolates. Seventy (48.7%) of the 150 samples screened harbours Bacillus species out of which 51, belonging to the strains:1. anthracis KPRR6, B. subtilis RO-NN-1, B.subtilis 557and B. subtilis J732 and Enterobacter cloacae JL1112 were histamine producers. The susceptibility patterns show that more than 70% of the Bacillus strains were resistant to at least 50% of the antibiotics used while sensitivity levels were less than 20% in more than 90% of the strains. Gene encoding virulence factor: nheA gene  in Bacillus and Gaplley ProofapC gene in Enterobacter  were detected at 480bp and 200bp  respectively. The high prevalence of histamine producing, multidrug resistant Bacillus and Enterobacter strains, with virulence factor gene, makes consumption of traditionally fermented locust bean unsafe. Deliberate efforts to select appropriate fermenting strains and proper regulation of fermentation conditions are therefore necessary to improve the safety of the product.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Adonu, C. C., Ezema, J. N., Onyi, P., & Onwusoba, R. (2025). Phenotypic and Genotypic Characterization of Histamine-producing Bacillus Species and Enterobacter cloacae Isolated from Fermented African Locust Beans in Enugu State, Nigeria. Tropical Journal of Natural Product Research (TJNPR), 9(6), 2852-2857. https://doi.org/10.26538/tjnpr/v9i6.67

References

1.Houndonougbo JS, Kassa B,Mensa S, Salako VK, Glele Kakai R, Assogbadjo AE. A Global Sysytematic Review on Conservation and Domestication of Parkia biglobosa (Jacq.) R. Br. Ex G. Don, an Indigenous Fruit Tree in SubSaharan African Traditional Parklands: Current Knowledge and future Directions. Genet Resour Crop Evol. 2020; Doi: 10.1007/s10722-020-00892-w.

2.Odunfa SA. Micro-Organisms Associated with Fermentation of African Locust Bean During Iru Preparation. J. Plant Foods 2017; (3) 245–250.

3.Elemo GN, Elemo BA, Oladunmoye OO, Ochuko LE. Comprehensive investigation into the nutritional composition of dehulled and defatted African locust beanseed (Parkia biglobosa). Afr J. Plant Sci. 2011; 5: 291-295.Available online at http://www.academicjournals.org/ajps

4.Ezema JN, Adonu CC, Agbo, EC, Imanyikwa, OE, Chinaka C, Nwangwu C., Amadi EC. Eze, EA. Isolation and Characterization of Histamine-Producing, Multidrug- Resistant Enterococcus Species in Fermented Oil Bean Seeds in Nsukka, Nigeria. Malaysian J. Microbiol. 2024; 20(1): 67-74.

5.Verardo, V., Gomez-Caravaca, A.M., Tabanelli, G. Bioactive Components in Fermented Foods and Food By- products. Foods 2020; 9: 153.

6.Yakubu CM, Sharma R, Sharma S. Fermentation of Locust Bean (Parkia biglobosa): Modulation in the Anti-nutrient Composition, Bioactive Profile, In-vitro Nutrient Digestibility, Functional and Morphological Characteristics. Int J. Food Sci Tech. 2021; 57(2): 753-762

7.Zebedee NE, Onwosi CO, Nwagu TN, Amadi OC. Changes in the Enzymes, Amino Acids, Metal Ions and Flavor Profile during Fermentation of African Locust Bean Seeds ‘Parkia biglobosa’ to Daddawa. J. Bio Res Biotech. 2022; 20(2): 1533-1545.

8.Ezema JN, Imanyikwa OE, Eze EA. Effects of Some Physicochemical Conditions on the Growth and Histamine Production by Enterococcus Isolates from Fermented Pentaclethra macrophylla (Oil Beans) in Nsukka, Nigeria. Trop J. Nat Prod Res. 2023; 7(12): 5699-5709.

9.Amao J.A, Odunfa SA, Mbom CN. The Role of Staphylococcus Species in the Production of Iru during the Fermentation of African Locust Beans (Parkia biglobosa). Food Res. 2017; 2(2): 187-193.

10.Ezeokoli OT, Adeleke RA Bezuidenhout CC. Core Bacterial Community of Soy-Daddawa: Insights from High- Throughput DNA Metabarcoding. Food Sci Tech, 2018; 97: 61-66.

11.Yves AK, Honore OG, Germain KT, Zeze, GK. Molecular Identification and Species Diversity of the Microbiota Associated with Soumbara, A Traditional Fermented Food Commonly Consumed in Cote d’Ivoire. Res J Food Sci Nutr. 2019; 4: 48-57.

12.Nwagu TN, Ugwuodo CJ, Onwosi, CO, Inyima O, Uchendu, OC, Akpuru C. Evaluation of the Probiotic Attributes of Bacillus Strains Isolated from Traditional Fermented African Locust Bean Seeds (Parkia biglobosa),“daddawa”. Annals Microbiol. 2020; 70(1): 1-15.

13.Olambiwoninu A, Debora E, Ayooluwa O, Awotundun T, Fasiku S. Probiotic Capability of Bacillus Species Isolated from Iru- Fermented African Locust Bean (Parkia biglobosa). EC Microbiol. 2022; 18(6): 18-30.

14.Adesanya BJ, faasema J, Acham IO. Effect of Bacillus subtilis Concentration and Fermentation Time on the Quality od African Locust Bean Condiment. Bact Emp. 2021; 4(2): e96.

15.Peng C, Chenxu L, Kefei T, Chuanzeng L, Xi X, Shaoyong Z, Xiangjing W, Junwei Z, Wensheng X. Characterization, Phylogenetic Analysis and Pathogenicity of Enterobacter cloacae on Rice Seedlings in Heilongjiang Province, China. Plant Dis. 2020; 104(6): 1601-1609.

16.Temsaah HR, Azmy AF, Ahmed AE, Elshebrawy HA, Kasem NG, El-Gohary FA, Lood C, Lavigne R, Abdelkader K. Characterization and Genomic Analysis of the Lytic Bacteriophage vB_EclM_HK6 as a potential Approach to Biocontrol the Spread of Enterobacter cloacae contaminating Food. BMC Microbiol. 2024; 24: 408.

17.Buckle J. Infection in: Buckle J (ed) Clinical Aromatherapy Essential Oil in Healthcare. Elsevier, United Kingdom 2015.

18.Davin-Regli A, Pagès JM. Enterobacter aerogenes and Enterobacter cloacae; Versatile Bacterial Pathogens Confronting Antibiotic Treatment. Front Microbiol. 2015; 6: 1-10.

19.Okechukwu RI, Ewelike NC, Ukaoma AA, Emejulu AA, Azuwike CO. Changes in the Nutrient Composition of the African Oil Bean Meal “Ugba” (Pentaclethre Macrophylla Benth) Subjected to Solid State Natural Fermentation. J Appl Biosci. 2012; 51: 3591- 3595.

20.Shilling L, Caihong J, Xinglian X, Ghengjian X, Kaixion L, Ruihua S. Improved Screening Procedure for Biogenic Amine Production by Lactic Acid Bacteria and Enterobacteria. Czech J. Food Sci. 2015; 3 (1): 19-26.

21.Yang E, Fan L, Yan J., Jiang Y., Doucette C., Fillmore S, Walker, B. Influence of Culture Media, PH and Temperature on Growth and Bacteriocin Production of Bacteriocinogenic Lactic Acid Bacteria. AMB Expr. 2018; 8(10): 1-14.

22.Benly P. Role of Histamine in Acute Inflammation. J Pharm Sci Res. 2015; 7(6): 373-376.

23.Douen D, Davaatseren M, Chung MS. Biogenic Amines in Foods. Food Sci Biotech. 2017; 26(6): 1463-1474.

24.Al Azad S, Farjana M, Mazumder B, Abdullah-Al-Mamun M, Inamul Haque ABM. Molecular Identification of a Bacillus cereus Strain from Mullar Buffalo Milk Showed Invitro Bioremediation Properties on Selective Heavy Metals. J. Adv Vet Animal Res. 2020; 7(1): 62-68.

25.Aryal S. Biochemical Test and Identification of Enterobacter cloacae. Microbiology info.com. 2024.

26.Niven CF, Jeffery MB, Corlett DA. Differential Plating Medium for Quantitative Detection of Histamine-Producing Bacteria. Appl Env Microbiol. 1981; 41(1): 321-322.

27.CLSI Performance Standards For Antimicrobial Susceptibility Testing, 33rd Edition. CLSI 2023 Supplement M100 Clinical Laboratory Standards Institute.

28.Shokoohizaden L, Rabiei M, Baharifar A, Keramat F, Ali L, Alikhani MY. Evaluation of Virulence Genes in Quinolone and Floroquinilone-resistant Uropathogenic Escherichia coli Isolates. Iran J. Med Microbiol. 2022; 16(6): 581-586.

29.Adeyemo A, Okunye O, Nwaokorie F, Kamet O. Isolation and Characterization of Coagulase Positive, Methicillin and Multidrug Resistant Stapylococcus and Mammaliicoccus Species from Wounds of Patients Attending Federal Medical Centre, Yola Adamawa State, Nigeria. Iran J. Med Microbiol. 2023; 17(4): 414-422.

30.Agunwah IM. Microbiological Evaluation of the Indigenous Fermented Condiment, Okpeye, Available at Various Retail Markets in the South-Eastern Region of Nigeria. Heliyon 2024; 10.

31.Prescott SL, Pawankar R, Allen KJ, Campbell DE, Sinn JK, Fiocchi A, Ebisawa M, Sampson HA, Beyer K, Lee BA. Global Survey of Changing Patterns of Food Allergy Burden in Children. World Aller Org J. 2013; 6: 1-12.

32.Wigand P, Blettner M, Saloga J, Decker H. Prevalence of Wine Intolerance. Deutsc Ärzteblatt Int. 2012; 109(25):437-444.

33.Visciano P, Schirone M, Tofalo R, and Suzzi G. Histamine Poisoning and Control Measures in Fish and Fishery Products. Front. Microbiol. 2014; 5 (500):1-3. DOI: 10.3389/fmicb.2014.005000.

34.Panja SK, Bhattacharya B, Lahiri SC. Role of Histamine as a Toxic Mediator in the Pathogenesis of Vertigo. Indian J. Dermatol. 2013; 58(6), 421-428.

35.Maintz L, Novak N. Histamine and Histamine Intolerance. Am. J. Clin. Nutr. 2007; 85:1185-1196.

36.Turnbull PCB. Bacillus. in: Baron S, editor. Medical Microbiology. 4th Edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter15. Available from:https://www.ncbi.nlm.nih.gov/books/NBK7699/.

37.Danevcic T, Stefanic P, Dogsa I, Mandi-Mulec I. Surfactin Facilitates Horizontal Gene Transfer in Bacillus subtilis. Front Microbiol, 2021; 12: 657307. Doi: 10.3389/fmicb.2021.657407.

38.Philips EK, Cannon JA, Zhou Y, Bonifer KS, Reynolds TB. Conjugation-mediated Plasmid Transfer Enables Genetic Modification of Diverse Bacillus species. Microbiol Spctr. 2023; 11(2). Doi: 10.1128/spectrum.03700-22.

39.Jamil S, Hui T, Mingshan J. Bacillus Species as Versatile Weapons for Plant Pathogens: a Review. Biotechn & Biotechnol Equip. 2017; 31(3): 446-459.